LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序
【LetMeFly】2583.二叉树中的第 K 大层和:层序遍历 + 排序
力扣题目链接:https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/
给你一棵二叉树的根节点 root 和一个正整数 k 。
树中的 层和 是指 同一层 上节点值的总和。
返回树中第 k 大的层和(不一定不同)。如果树少于 k 层,则返回 -1 。
注意,如果两个节点与根节点的距离相同,则认为它们在同一层。
示例 1:

输入:root = [5,8,9,2,1,3,7,4,6], k = 2 输出:13 解释:树中每一层的层和分别是: - Level 1: 5 - Level 2: 8 + 9 = 17 - Level 3: 2 + 1 + 3 + 7 = 13 - Level 4: 4 + 6 = 10 第 2 大的层和等于 13 。
示例 2:

输入:root = [1,2,null,3], k = 1 输出:3 解释:最大的层和是 3 。
提示:
- 树中的节点数为
n 2 <= n <= 1051 <= Node.val <= 1061 <= k <= n
方法一:层序遍历 + 排序
如果已经掌握了二叉树的层序遍历,那么这道题将会如鱼得水。
我们依然进行层序遍历,在层序遍历的过程中,计算每一层的节点值之和,并加入到一个数组中。
遍历结束后,对数组进行排序,返回第k大值或-1即可。
- 时间复杂度 O ( N 1 + N 2 log N 2 ) O(N1 + N2\log N2) O(N1+N2logN2),其中 N 1 N1 N1是二叉树节点个数, N 2 N2 N2是二叉树深度
- 空间复杂度 O ( N 3 + N 2 ) O(N3 + N2) O(N3+N2),其中 N 3 N3 N3是最多一层的节点个数
时空复杂度也可以将全部的 N N N都视为二叉树节点个数。
AC代码
C++
typedef long long ll;
class Solution {
public:ll kthLargestLevelSum(TreeNode* root, int k) {vector<ll> values;queue<TreeNode*> q;q.push(root);while (q.size()) {ll cnt = 0;for (int _ = q.size(); _ > 0; _--) {TreeNode* thisNode = q.front();q.pop();cnt += thisNode->val;if (thisNode->left) {q.push(thisNode->left);}if (thisNode->right) {q.push(thisNode->right);}}values.push_back(cnt);}sort(values.begin(), values.end());return k > values.size() ? -1 : values[values.size() - k];}
};
Python
注意本题数据级别是 1 0 5 10^5 105,不能使用数组切片模拟队列的方式。
# # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = rightclass Solution:def kthLargestLevelSum(self, root: TreeNode, k: int) -> int:values = []q = [root]while q:cnt = 0thisLayer = qq = []for thisNode in thisLayer:cnt += thisNode.valif thisNode.left:q.append(thisNode.left)if thisNode.right:q.append(thisNode.right)values.append(cnt)values.sort()return values[len(values) - k] if len(values) >= k else -1
同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/136252010
相关文章:
LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序
【LetMeFly】2583.二叉树中的第 K 大层和:层序遍历 排序 力扣题目链接:https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/ 给你一棵二叉树的根节点 root 和一个正整数 k 。 树中的 层和 是指 同一层 上节点值的总和。 返回树中第 k …...
element ui 安装 简易过程 已解决
我之所以将Element归类为Vue.js,其主要原因是Element是(饿了么团队)基于MVVM框架Vue开源出来的一套前端ui组件。我最爱的就是它的布局容器!!! 下面进入正题: 1、Element的安装 首先你需要创建…...
websoket
WebSockets 是一种先进的技术。它可以在用户的浏览器和服务器之间打开交互式通信会话。你可以向服务器发送消息并接收事件驱动的响应,而无需通过轮询服务器的方式以获得响应,比较典型的应用场景就是即时通讯(聊天)系统。 <!DOC…...
案例:微服务从Java/SpringBoot迁移到Golan
基于 Java 的微服务,特别是那些使用 Spring Boot 的微服务,长期以来因其强大的功能和广泛的社区支持而闻名。Spring Boot 的约定优于配置方法简化了微服务的部署和开发,提供了大量开箱即用的功能,例如自动配置、独立功能和简单的依…...
小波变换模拟
小波变换是一种信号处理技术,通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用,可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。 MATLAB中提供了用于二维离散小波变换的…...
cv::Mat图像操作
图像读写 //include header #include <opencv2/imgcodecs.hpp>/** Currently, the following file formats are supported: Windows bitmaps - *.bmp, *.dib (always supported) JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section) JPEG 2000 files - *.jp2 (s…...
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ 💡往期推荐: 【机器学习基础】机器学习入门(1) 【机器学习基…...
2024年软件测试岗位-面试
第一部分: 1、自我介绍:简历写到的快速描述,学校、学历、工作经验等(注意:不要过度优化简历,你不写别人可能会问,但你写了别人一定会问!) 第二部分: 1、功能测…...
【坑】Spring Boot整合MyBatis,一级缓存失效
一、Spring Boot整合MyBatis,一级缓存失效 1.1、概述 MyBatis一级缓存的作用域是同一个SqlSession,在同一个SqlSession中执行两次相同的查询,第一次执行完毕后,Mybatis会将查询到的数据缓存起来(缓存到内存中…...
J7 - 对于ResNeXt-50算法的思考
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 J6周有一段代码如下 思考过程 首先看到这个问题的描述,想到的是可能使用了向量操作的广播机制然后就想想办法验证一下&…...
R3F(React Three Fiber)基础篇
之前一直在做ThreeJS方向,整理了两篇R3F(React Three Fiber)的文档,这是基础篇,如果您的业务场景需要使用R3F,您又对R3F不太了解,或者不想使用R3F全英文文档,您可以参考一下这篇&…...
torch\tensorflow在大语言模型LLM中的作用
文章目录 torch\tensorflow在大语言模型LLM中的作用 torch\tensorflow在大语言模型LLM中的作用 在大型语言模型(LLM)中,PyTorch和TensorFlow这两个深度学习框架起着至关重要的作用。它们为构建、训练和部署LLM提供了必要的工具和基础设施。 …...
设计模式-创建型模式-单例模式
0 引言 创建型模式(Creational Pattern)关注对象的创建过程,是一类最常用的设计模式,每个创建型模式都通过采用不同的解决方案来回答3个问题:创建什么(What),由谁创建(W…...
备战蓝桥杯—— 双指针技巧巧答链表1
对于单链表相关的问题,双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决: 合并两个有序链表: 使用两个指针分别指向两个链表的头部,逐一比较节点的值,将较小的节点链接到结果链表…...
微信小程序返回上一级页面并自动刷新数据
文章目录 前言一、获取小程序栈二、生命周期触发总结 前言 界面由A到B,在由B返回A,触发刷新动作 一、获取小程序栈 界面A代码 shuaxin(){//此处可进行接口请求从而实现更新数据的效果console.log("刷新本页面数据啦")},界面B代码 // 返回触…...
Spring⼯⼚创建复杂对象
文章目录 5. Spring⼯⼚创建复杂对象5.1 什么是复杂对象5.2 Spring⼯⼚创建复杂对象的3种⽅式5.2.1 FactoryBean 接口5.2.2 实例⼯⼚5.2.3 静态工厂 5.3 Spring 工厂的总结 6. 控制Spring⼯⼚创建对象的次数6.1 如何控制简单对象的创建次数6.2 如何控制复杂对象的创建次数6.3 为…...
Top-N 泛型工具类
一、代码实现 通过封装 PriorityQueue 实现,PriorityQueue 本质上是完全二叉树实现的小根堆(相对来说,如果比较器反向比较则是大根堆)。 public class TopNUtil<E extends Comparable<E>> {private final PriorityQ…...
Java 后端面试指南
面试指南 TMD,一个后端为什么要了解那么多的知识,真是服了。啥啥都得了解 MySQL MySQL索引可能在以下几种情况下失效: 不遵循最左匹配原则:在联合索引中,如果没有使用索引的最左前缀,即查询条件中没有包含…...
142.环形链表 ||
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整…...
Nacos、Eureka、Zookeeper注册中心的区别
Nacos、Eureka和Zookeeper都是常用的注册中心,它们在功能和实现方式上存在一些不同。 Nacos除了作为注册中心外,还提供了配置管理、服务发现和事件通知等功能。Nacos默认情况下采用AP架构保证服务可用性,CP架构底层采用Raft协议保证数据的一…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
