当前位置: 首页 > news >正文

小波变换模拟

小波变换是一种信号处理技术,通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用,可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。

MATLAB中提供了用于二维离散小波变换的函数 dwt2,可以将图像进行小波分解。该函数执行的是多级离散小波变换,将图像分解为多个尺度的近似系数和细节系数。具体来说,dwt2函数的语法如下:

[C, S] = dwt2(X, wavelet)

其中,

  • X 是输入的二维图像;
  • wavelet 是指定的小波基函数,比如 'haar''db1' 等;
  • C 是包含小波变换系数的矩阵;
  • S 是描述小波变换结果各层的结构体。

可以通过调用dwt2函数来执行二维离散小波变换,得到图像的小波分解系数和结构信息。然后,你可以进一步对获得的系数进行处理,比如重构原始图像、进行图像压缩、图像增强等。

需要注意的是,小波变换是一种复杂的信号处理技术,需要一定的理论基础和实践经验来使用和理解。

MATLAB实现过程

% 读取lena图像
originalImage = imread('lenagray.bmp');% 如果图像是RGB图,转换为灰度图
if size(originalImage, 3) == 3originalImage = rgb2gray(originalImage);
end% 小波变换,这里使用了Haar小波和单级分解
[LL, LH, HL, HH] = dwt2(originalImage, 'haar');% 将系数转化为可显示的格式
LL_visual = mat2gray(LL);
LH_visual = mat2gray(LH);
HL_visual = mat2gray(HL);
HH_visual = mat2gray(HH);figure,imshow(originalImage);figure,
% 显示变换后的子带
subplot(2,2,1), imshow(LL_visual), title('LL (Approximation)');
subplot(2,2,2), imshow(LH_visual), title('LH (Horizontal Detail)');
subplot(2,2,3), imshow(HL_visual), title('HL (Vertical Detail)');
subplot(2,2,4), imshow(HH_visual), title('HH (Diagonal Detail)');% 根据LL,LH,HL,HH的大小对它们进行填充
% LL_padded = padarray(LL,[size(LH, 1) size(HL, 2)],'post');% 组合各子带以形成矩形图像
waveletImage = [LL, LH; HL, HH];% 显示组合后的图像
figure, imshow(mat2gray(waveletImage)), title('Combined Wavelet Components');

输出结果

分别显示了:

  • 原始图像
  • 各个子带
  • 拼接子带
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

多次分解演示


clc
clearvars% 读取lena图像
X = imread('lenagray.bmp');% 小波变换,这里使用了Haar小波和单级分解
[LL1, LH1, HL1, HH1] = dwt2(X, 'haar');
[LL2, LH2, HL2, HH2] = dwt2(LL1, 'haar');
[LL3, LH3, HL3, HH3] = dwt2(LL2, 'haar');
[LL4, LH4, HL4, HH4] = dwt2(LL3, 'haar');LL3 = [LL4, LH4; HL4, HH4];
LL2=[LL3, LH3; HL3, HH3];
LL1=[LL2, LH2; HL2, HH2];
X1=[LL1, LH1; HL1, HH1];
figure,imshow(X1);

在这里插入图片描述

多次拆分合并

clc
clearvars% 注:请确保'lenagray.bmp'文件在当前文件夹中,或者用你的文件路径替换它
X = imread('lenagray.bmp');
figure;
imshow(X), title('Original Image');
% 小波分解使用了Haar小波(4级分解)
[LL1, LH1, HL1, HH1] = dwt2(X, 'haar');
[LL2, LH2, HL2, HH2] = dwt2(LL1, 'haar');
[LL3, LH3, HL3, HH3] = dwt2(LL2, 'haar');
[LL4, LH4, HL4, HH4] = dwt2(LL3, 'haar');LL3 = [LL4, LH4; HL4, HH4];
LL2=[LL3, LH3; HL3, HH3];
LL1=[LL2, LH2; HL2, HH2];
X1=[LL1, LH1; HL1, HH1];
figure,imshow(X1); title('dwt2 Image');
% 从X1重构图像,你的X1已经提供了需要的所有细节系数
% 执行逆小波变换
[LL1, LH1, HL1, HH1] = partitionMatrix(X1);
[LL2, LH2, HL2, HH2] = partitionMatrix(LL1);
[LL3, LH3, HL3, HH3] = partitionMatrix(LL2);
[LL4, LH4, HL4, HH4] = partitionMatrix(LL3);% 第四级逆变换
LL3 = idwt2(LL4, LH4, HL4, HH4, 'haar');% 第三级逆变换
LL2= idwt2(LL3, LH3, HL3, HH3, 'haar');% 第二级逆变换
LL1 = idwt2(LL2, LH2, HL2, HH2, 'haar');% 第一级逆变换,得到原始图像
X_reconstructed = idwt2(LL1, LH1, HL1, HH1, 'haar');% 显示原始图像和重建图像
figure,imshow(uint8(X_reconstructed)), title('Reconstructed Image');function [X1, X2, X3, X4] = partitionMatrix(X)
% 获取矩阵X的大小
[m, n] = size(X);% 将矩阵X划分为四等份
X1 = X(1:m/2, 1:n/2); % 左上角子矩阵
X2 = X(1:m/2, n/2+1:end); % 右上角子矩阵
X3 = X(m/2+1:end, 1:n/2); % 左下角子矩阵
X4 = X(m/2+1:end, n/2+1:end); % 右下角子矩阵
end

输出结果:
在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

相关文章:

小波变换模拟

小波变换是一种信号处理技术,通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用,可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。 MATLAB中提供了用于二维离散小波变换的…...

cv::Mat图像操作

图像读写 //include header #include <opencv2/imgcodecs.hpp>/** Currently, the following file formats are supported: Windows bitmaps - *.bmp, *.dib (always supported) JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section) JPEG 2000 files - *.jp2 (s…...

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…...

2024年软件测试岗位-面试

第一部分&#xff1a; 1、自我介绍&#xff1a;简历写到的快速描述&#xff0c;学校、学历、工作经验等&#xff08;注意&#xff1a;不要过度优化简历&#xff0c;你不写别人可能会问&#xff0c;但你写了别人一定会问&#xff01;&#xff09; 第二部分&#xff1a; 1、功能测…...

【坑】Spring Boot整合MyBatis,一级缓存失效

一、Spring Boot整合MyBatis&#xff0c;一级缓存失效 1.1、概述 MyBatis一级缓存的作用域是同一个SqlSession&#xff0c;在同一个SqlSession中执行两次相同的查询&#xff0c;第一次执行完毕后&#xff0c;Mybatis会将查询到的数据缓存起来&#xff08;缓存到内存中&#xf…...

J7 - 对于ResNeXt-50算法的思考

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 J6周有一段代码如下 思考过程 首先看到这个问题的描述&#xff0c;想到的是可能使用了向量操作的广播机制然后就想想办法验证一下&…...

R3F(React Three Fiber)基础篇

之前一直在做ThreeJS方向&#xff0c;整理了两篇R3F&#xff08;React Three Fiber&#xff09;的文档&#xff0c;这是基础篇&#xff0c;如果您的业务场景需要使用R3F&#xff0c;您又对R3F不太了解&#xff0c;或者不想使用R3F全英文文档&#xff0c;您可以参考一下这篇&…...

torch\tensorflow在大语言模型LLM中的作用

文章目录 torch\tensorflow在大语言模型LLM中的作用 torch\tensorflow在大语言模型LLM中的作用 在大型语言模型&#xff08;LLM&#xff09;中&#xff0c;PyTorch和TensorFlow这两个深度学习框架起着至关重要的作用。它们为构建、训练和部署LLM提供了必要的工具和基础设施。 …...

设计模式-创建型模式-单例模式

0 引言 创建型模式&#xff08;Creational Pattern&#xff09;关注对象的创建过程&#xff0c;是一类最常用的设计模式&#xff0c;每个创建型模式都通过采用不同的解决方案来回答3个问题&#xff1a;创建什么&#xff08;What&#xff09;&#xff0c;由谁创建&#xff08;W…...

备战蓝桥杯—— 双指针技巧巧答链表1

对于单链表相关的问题&#xff0c;双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决&#xff1a; 合并两个有序链表&#xff1a; 使用两个指针分别指向两个链表的头部&#xff0c;逐一比较节点的值&#xff0c;将较小的节点链接到结果链表…...

微信小程序返回上一级页面并自动刷新数据

文章目录 前言一、获取小程序栈二、生命周期触发总结 前言 界面由A到B&#xff0c;在由B返回A&#xff0c;触发刷新动作 一、获取小程序栈 界面A代码 shuaxin(){//此处可进行接口请求从而实现更新数据的效果console.log("刷新本页面数据啦")},界面B代码 // 返回触…...

Spring⼯⼚创建复杂对象

文章目录 5. Spring⼯⼚创建复杂对象5.1 什么是复杂对象5.2 Spring⼯⼚创建复杂对象的3种⽅式5.2.1 FactoryBean 接口5.2.2 实例⼯⼚5.2.3 静态工厂 5.3 Spring 工厂的总结 6. 控制Spring⼯⼚创建对象的次数6.1 如何控制简单对象的创建次数6.2 如何控制复杂对象的创建次数6.3 为…...

Top-N 泛型工具类

一、代码实现 通过封装 PriorityQueue 实现&#xff0c;PriorityQueue 本质上是完全二叉树实现的小根堆&#xff08;相对来说&#xff0c;如果比较器反向比较则是大根堆&#xff09;。 public class TopNUtil<E extends Comparable<E>> {private final PriorityQ…...

Java 后端面试指南

面试指南 TMD&#xff0c;一个后端为什么要了解那么多的知识&#xff0c;真是服了。啥啥都得了解 MySQL MySQL索引可能在以下几种情况下失效&#xff1a; 不遵循最左匹配原则&#xff1a;在联合索引中&#xff0c;如果没有使用索引的最左前缀&#xff0c;即查询条件中没有包含…...

142.环形链表 ||

给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整…...

Nacos、Eureka、Zookeeper注册中心的区别

Nacos、Eureka和Zookeeper都是常用的注册中心&#xff0c;它们在功能和实现方式上存在一些不同。 Nacos除了作为注册中心外&#xff0c;还提供了配置管理、服务发现和事件通知等功能。Nacos默认情况下采用AP架构保证服务可用性&#xff0c;CP架构底层采用Raft协议保证数据的一…...

CSS重点知识整理1

目录 1 平面位移 1.1 基本使用 1.2 单独方向的位移 1.3 使用平面位移实现绝对位置居中 2 平面旋转 2.1 基本使用 2.2 圆点转换 2.3 多重转换 3 平面缩放 3.1 基本使用 3.2 渐变的使用 4 空间转换 4.1 空间位移 4.1.1 基本使用 4.1.2 透视 4.2 空间旋转 4.3 立…...

【Langchain多Agent实践】一个有推销功能的旅游聊天机器人

【LangchainStreamlit】旅游聊天机器人_langchain streamlit-CSDN博客 视频讲解地址&#xff1a;【Langchain Agent】带推销功能的旅游聊天机器人_哔哩哔哩_bilibili 体验地址&#xff1a; http://101.33.225.241:8503/ github地址&#xff1a;GitHub - jerry1900/langcha…...

算法学习(十二)并查集

并查集 1. 概念 并查集主要用于解决一些 元素分组 问题&#xff0c;通过以下操作管理一系列不相交的集合&#xff1a; 合并&#xff08;Union&#xff09;&#xff1a;把两个不相交的集合合并成一个集合 查询&#xff08;Find&#xff09;&#xff1a;查询两个元素是否在同一…...

TensorRT及CUDA自学笔记003 NVCC及其命令行参数

TensorRT及CUDA自学笔记003 NVCC及其命令行参数 各位大佬&#xff0c;这是我的自学笔记&#xff0c;如有错误请指正&#xff0c;也欢迎在评论区学习交流&#xff0c;谢谢&#xff01; NVCC是一种编译器&#xff0c;基于一些命令行参数可以将使用PTX或C语言编写的代码编译成可…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...