J7 - 对于ResNeXt-50算法的思考
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
J6周有一段代码如下
思考过程
- 首先看到这个问题的描述,想到的是可能使用了向量操作的广播机制
- 然后就想想办法验证一下,想到直接把J6的tensorflow代码跑一遍
- 通过model.summary打印了模型的所有层的信息,并把信息处理成方便查看(去掉分组卷积的一大堆层)
- 发现通道数一致,并不是使用了广播机制
- 仔细分析模型的过程,得出解释
验证过程
summary直接打印的内容,(太大只能贴出部分)
Model: "model"
__________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to
==================================================================================================input_4 (InputLayer) [(None, 224, 224, 3)] 0 [] zero_padding2d_6 (ZeroPadd (None, 230, 230, 3) 0 ['input_4[0][0]'] ing2D) conv2d_555 (Conv2D) (None, 112, 112, 64) 9472 ['zero_padding2d_6[0][0]'] batch_normalization_59 (Ba (None, 112, 112, 64) 256 ['conv2d_555[0][0]'] tchNormalization) re_lu_53 (ReLU) (None, 112, 112, 64) 0 ['batch_normalization_59[0][0]'] zero_padding2d_7 (ZeroPadd (None, 114, 114, 64) 0 ['re_lu_53[0][0]'] ing2D) max_pooling2d_3 (MaxPoolin (None, 56, 56, 64) 0 ['zero_padding2d_7[0][0]'] g2D) conv2d_557 (Conv2D) (None, 56, 56, 128) 8192 ['max_pooling2d_3[0][0]'] batch_normalization_61 (Ba (None, 56, 56, 128) 512 ['conv2d_557[0][0]'] tchNormalization) re_lu_54 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_61[0][0]'] lambda_514 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_515 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_516 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_517 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_518 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_519 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_520 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_521 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_522 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_523 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_524 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_525 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_526 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_527 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_528 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_529 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_530 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_531 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_532 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_533 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_534 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_535 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_536 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_537 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_538 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_539 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_540 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_541 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_542 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_543 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_544 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] lambda_545 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]'] conv2d_558 (Conv2D) (None, 56, 56, 4) 144 ['lambda_514[0][0]'] conv2d_559 (Conv2D) (None, 56, 56, 4) 144 ['lambda_515[0][0]'] conv2d_560 (Conv2D) (None, 56, 56, 4) 144 ['lambda_516[0][0]'] conv2d_561 (Conv2D) (None, 56, 56, 4) 144 ['lambda_517[0][0]'] conv2d_562 (Conv2D) (None, 56, 56, 4) 144 ['lambda_518[0][0]'] conv2d_563 (Conv2D) (None, 56, 56, 4) 144 ['lambda_519[0][0]'] conv2d_564 (Conv2D) (None, 56, 56, 4) 144 ['lambda_520[0][0]'] conv2d_565 (Conv2D) (None, 56, 56, 4) 144 ['lambda_521[0][0]'] conv2d_566 (Conv2D) (None, 56, 56, 4) 144 ['lambda_522[0][0]'] conv2d_567 (Conv2D) (None, 56, 56, 4) 144 ['lambda_523[0][0]'] conv2d_568 (Conv2D) (None, 56, 56, 4) 144 ['lambda_524[0][0]'] conv2d_569 (Conv2D) (None, 56, 56, 4) 144 ['lambda_525[0][0]'] conv2d_570 (Conv2D) (None, 56, 56, 4) 144 ['lambda_526[0][0]'] conv2d_571 (Conv2D) (None, 56, 56, 4) 144 ['lambda_527[0][0]'] conv2d_572 (Conv2D) (None, 56, 56, 4) 144 ['lambda_528[0][0]'] conv2d_573 (Conv2D) (None, 56, 56, 4) 144 ['lambda_529[0][0]'] conv2d_574 (Conv2D) (None, 56, 56, 4) 144 ['lambda_530[0][0]'] conv2d_575 (Conv2D) (None, 56, 56, 4) 144 ['lambda_531[0][0]'] conv2d_576 (Conv2D) (None, 56, 56, 4) 144 ['lambda_532[0][0]'] conv2d_577 (Conv2D) (None, 56, 56, 4) 144 ['lambda_533[0][0]'] conv2d_578 (Conv2D) (None, 56, 56, 4) 144 ['lambda_534[0][0]'] conv2d_579 (Conv2D) (None, 56, 56, 4) 144 ['lambda_535[0][0]'] conv2d_580 (Conv2D) (None, 56, 56, 4) 144 ['lambda_536[0][0]'] conv2d_581 (Conv2D) (None, 56, 56, 4) 144 ['lambda_537[0][0]'] conv2d_582 (Conv2D) (None, 56, 56, 4) 144 ['lambda_538[0][0]'] conv2d_583 (Conv2D) (None, 56, 56, 4) 144 ['lambda_539[0][0]'] conv2d_584 (Conv2D) (None, 56, 56, 4) 144 ['lambda_540[0][0]'] conv2d_585 (Conv2D) (None, 56, 56, 4) 144 ['lambda_541[0][0]'] conv2d_586 (Conv2D) (None, 56, 56, 4) 144 ['lambda_542[0][0]'] conv2d_587 (Conv2D) (None, 56, 56, 4) 144 ['lambda_543[0][0]'] conv2d_588 (Conv2D) (None, 56, 56, 4) 144 ['lambda_544[0][0]'] conv2d_589 (Conv2D) (None, 56, 56, 4) 144 ['lambda_545[0][0]'] concatenate_16 (Concatenat (None, 56, 56, 128) 0 ['conv2d_558[0][0]', e) 'conv2d_559[0][0]', 'conv2d_560[0][0]', 'conv2d_561[0][0]', 'conv2d_562[0][0]', 'conv2d_563[0][0]', 'conv2d_564[0][0]', 'conv2d_565[0][0]', 'conv2d_566[0][0]', 'conv2d_567[0][0]', 'conv2d_568[0][0]', 'conv2d_569[0][0]', 'conv2d_570[0][0]', 'conv2d_571[0][0]', 'conv2d_572[0][0]', 'conv2d_573[0][0]', 'conv2d_574[0][0]', 'conv2d_575[0][0]', 'conv2d_576[0][0]', 'conv2d_577[0][0]', 'conv2d_578[0][0]', 'conv2d_579[0][0]', 'conv2d_580[0][0]', 'conv2d_581[0][0]', 'conv2d_582[0][0]', 'conv2d_583[0][0]', 'conv2d_584[0][0]', 'conv2d_585[0][0]', 'conv2d_586[0][0]', 'conv2d_587[0][0]', 'conv2d_588[0][0]', 'conv2d_589[0][0]'] batch_normalization_62 (Ba (None, 56, 56, 128) 512 ['concatenate_16[0][0]'] tchNormalization) re_lu_55 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_62[0][0]'] conv2d_590 (Conv2D) (None, 56, 56, 256) 32768 ['re_lu_55[0][0]'] conv2d_556 (Conv2D) (None, 56, 56, 256) 16384 ['max_pooling2d_3[0][0]'] batch_normalization_63 (Ba (None, 56, 56, 256) 1024 ['conv2d_590[0][0]'] tchNormalization) batch_normalization_60 (Ba (None, 56, 56, 256) 1024 ['conv2d_556[0][0]'] tchNormalization) add_16 (Add) (None, 56, 56, 256) 0 ['batch_normalization_63[0][0]', 'batch_normalization_60[0][0]'] re_lu_56 (ReLU) (None, 56, 56, 256) 0 ['add_16[0][0]'] conv2d_591 (Conv2D) (None, 56, 56, 128) 32768 ['re_lu_56[0][0]'] batch_normalization_64 (Ba (None, 56, 56, 128) 512 ['conv2d_591[0][0]'] tchNormalization) re_lu_57 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_64[0][0]'] lambda_546 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_547 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_548 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_549 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_550 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_551 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_552 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_553 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_554 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_555 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_556 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_557 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_558 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_559 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_560 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_561 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_562 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_563 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_564 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_565 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_566 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_567 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_568 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_569 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_570 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_571 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_572 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_573 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_574 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_575 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_576 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] lambda_577 (Lambda) (None, 56, 56, 4) 0 ['re_lu_57[0][0]'] conv2d_592 (Conv2D) (None, 56, 56, 4) 144 ['lambda_546[0][0]'] conv2d_593 (Conv2D) (None, 56, 56, 4) 144 ['lambda_547[0][0]'] conv2d_594 (Conv2D) (None, 56, 56, 4) 144 ['lambda_548[0][0]'] conv2d_595 (Conv2D) (None, 56, 56, 4) 144 ['lambda_549[0][0]'] conv2d_596 (Conv2D) (None, 56, 56, 4) 144 ['lambda_550[0][0]'] conv2d_597 (Conv2D) (None, 56, 56, 4) 144 ['lambda_551[0][0]'] conv2d_598 (Conv2D) (None, 56, 56, 4) 144 ['lambda_552[0][0]'] conv2d_599 (Conv2D) (None, 56, 56, 4) 144 ['lambda_553[0][0]'] conv2d_600 (Conv2D) (None, 56, 56, 4) 144 ['lambda_554[0][0]'] conv2d_601 (Conv2D) (None, 56, 56, 4) 144 ['lambda_555[0][0]'] conv2d_602 (Conv2D) (None, 56, 56, 4) 144 ['lambda_556[0][0]'] conv2d_603 (Conv2D) (None, 56, 56, 4) 144 ['lambda_557[0][0]'] conv2d_604 (Conv2D) (None, 56, 56, 4) 144 ['lambda_558[0][0]'] conv2d_605 (Conv2D) (None, 56, 56, 4) 144 ['lambda_559[0][0]'] conv2d_606 (Conv2D) (None, 56, 56, 4) 144 ['lambda_560[0][0]'] conv2d_607 (Conv2D) (None, 56, 56, 4) 144 ['lambda_561[0][0]'] conv2d_608 (Conv2D) (None, 56, 56, 4) 144 ['lambda_562[0][0]'] conv2d_609 (Conv2D) (None, 56, 56, 4) 144 ['lambda_563[0][0]'] conv2d_610 (Conv2D) (None, 56, 56, 4) 144 ['lambda_564[0][0]'] conv2d_611 (Conv2D) (None, 56, 56, 4) 144 ['lambda_565[0][0]'] conv2d_612 (Conv2D) (None, 56, 56, 4) 144 ['lambda_566[0][0]'] conv2d_613 (Conv2D) (None, 56, 56, 4) 144 ['lambda_567[0][0]'] conv2d_614 (Conv2D) (None, 56, 56, 4) 144 ['lambda_568[0][0]'] conv2d_615 (Conv2D) (None, 56, 56, 4) 144 ['lambda_569[0][0]'] conv2d_616 (Conv2D) (None, 56, 56, 4) 144 ['lambda_570[0][0]'] conv2d_617 (Conv2D) (None, 56, 56, 4) 144 ['lambda_571[0][0]'] conv2d_618 (Conv2D) (None, 56, 56, 4) 144 ['lambda_572[0][0]'] conv2d_619 (Conv2D) (None, 56, 56, 4) 144 ['lambda_573[0][0]'] conv2d_620 (Conv2D) (None, 56, 56, 4) 144 ['lambda_574[0][0]'] conv2d_621 (Conv2D) (None, 56, 56, 4) 144 ['lambda_575[0][0]'] conv2d_622 (Conv2D) (None, 56, 56, 4) 144 ['lambda_576[0][0]'] conv2d_623 (Conv2D) (None, 56, 56, 4) 144 ['lambda_577[0][0]'] concatenate_17 (Concatenat (None, 56, 56, 128) 0 ['conv2d_592[0][0]', e) 'conv2d_593[0][0]', 'conv2d_594[0][0]', 'conv2d_595[0][0]', 'conv2d_596[0][0]', 'conv2d_597[0][0]', 'conv2d_598[0][0]', 'conv2d_599[0][0]', 'conv2d_600[0][0]', 'conv2d_601[0][0]', 'conv2d_602[0][0]', 'conv2d_603[0][0]', 'conv2d_604[0][0]', 'conv2d_605[0][0]', 'conv2d_606[0][0]', 'conv2d_607[0][0]', 'conv2d_608[0][0]', 'conv2d_609[0][0]', 'conv2d_610[0][0]', 'conv2d_611[0][0]', 'conv2d_612[0][0]', 'conv2d_613[0][0]', 'conv2d_614[0][0]', 'conv2d_615[0][0]', 'conv2d_616[0][0]', 'conv2d_617[0][0]', 'conv2d_618[0][0]', 'conv2d_619[0][0]', 'conv2d_620[0][0]', 'conv2d_621[0][0]', 'conv2d_622[0][0]', 'conv2d_623[0][0]'] batch_normalization_65 (Ba (None, 56, 56, 128) 512 ['concatenate_17[0][0]'] tchNormalization) re_lu_58 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_65[0][0]']
打印的层中,有大量的lambda,对照源代码,lambda操作在分组卷积内,我们可以把这一堆lambda一直到下面的concatenate全部看作在做分组卷积,分组卷积并不改变通道数,只是简化参数量。
# 把summary输出到文件中,使用python脚本处理掉这堆lambda
# 打开文件
f = open('summary')
# 读取内容
content = f.read()
# 按换行切分
lines = content.split('\n')clean_lines = []
# 过滤处理
for line in lines:if len(line.strip()) == 0:continueif len(line) - len(line.strip()) == 78 or len(line) - len(line.strip()) == 79:# 去掉concatenate那一堆connect tocontinue if 'lambda' in line:continueclean_lines.append(line)
for line in clean_lines:print(line)
处理后的模型结构如下
Model: "model"
__________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to
==================================================================================================input_4 (InputLayer) [(None, 224, 224, 3)] 0 []zero_padding2d_6 (ZeroPadd (None, 230, 230, 3) 0 ['input_4[0][0]']ing2D)conv2d_555 (Conv2D) (None, 112, 112, 64) 9472 ['zero_padding2d_6[0][0]']batch_normalization_59 (Ba (None, 112, 112, 64) 256 ['conv2d_555[0][0]']tchNormalization)re_lu_53 (ReLU) (None, 112, 112, 64) 0 ['batch_normalization_59[0][0]']zero_padding2d_7 (ZeroPadd (None, 114, 114, 64) 0 ['re_lu_53[0][0]']ing2D)max_pooling2d_3 (MaxPoolin (None, 56, 56, 64) 0 ['zero_padding2d_7[0][0]']g2D)conv2d_557 (Conv2D) (None, 56, 56, 128) 8192 ['max_pooling2d_3[0][0]']batch_normalization_61 (Ba (None, 56, 56, 128) 512 ['conv2d_557[0][0]']tchNormalization)re_lu_54 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_61[0][0]']concatenate_16 (Concatenat (None, 56, 56, 128) 0 ['conv2d_558[0][0]',e) 'conv2d_559[0][0]',batch_normalization_62 (Ba (None, 56, 56, 128) 512 ['concatenate_16[0][0]']tchNormalization)re_lu_55 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_62[0][0]']conv2d_590 (Conv2D) (None, 56, 56, 256) 32768 ['re_lu_55[0][0]']conv2d_556 (Conv2D) (None, 56, 56, 256) 16384 ['max_pooling2d_3[0][0]']batch_normalization_63 (Ba (None, 56, 56, 256) 1024 ['conv2d_590[0][0]']tchNormalization)batch_normalization_60 (Ba (None, 56, 56, 256) 1024 ['conv2d_556[0][0]']tchNormalization)add_16 (Add) (None, 56, 56, 256) 0 ['batch_normalization_63[0][0]','batch_normalization_60[0][0]']re_lu_56 (ReLU) (None, 56, 56, 256) 0 ['add_16[0][0]']conv2d_591 (Conv2D) (None, 56, 56, 128) 32768 ['re_lu_56[0][0]']batch_normalization_64 (Ba (None, 56, 56, 128) 512 ['conv2d_591[0][0]']tchNormalization)re_lu_57 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_64[0][0]']concatenate_17 (Concatenat (None, 56, 56, 128) 0 ['conv2d_592[0][0]',e) 'conv2d_593[0][0]',batch_normalization_65 (Ba (None, 56, 56, 128) 512 ['concatenate_17[0][0]']tchNormalization)re_lu_58 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_65[0][0]']conv2d_624 (Conv2D) (None, 56, 56, 256) 32768 ['re_lu_58[0][0]']batch_normalization_66 (Ba (None, 56, 56, 256) 1024 ['conv2d_624[0][0]']tchNormalization)add_17 (Add) (None, 56, 56, 256) 0 ['batch_normalization_66[0][0]','re_lu_56[0][0]']re_lu_59 (ReLU) (None, 56, 56, 256) 0 ['add_17[0][0]']conv2d_625 (Conv2D) (None, 56, 56, 128) 32768 ['re_lu_59[0][0]']batch_normalization_67 (Ba (None, 56, 56, 128) 512 ['conv2d_625[0][0]']tchNormalization)re_lu_60 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_67[0][0]']concatenate_18 (Concatenat (None, 56, 56, 128) 0 ['conv2d_626[0][0]',e) 'conv2d_627[0][0]',batch_normalization_68 (Ba (None, 56, 56, 128) 512 ['concatenate_18[0][0]']tchNormalization)re_lu_61 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_68[0][0]']conv2d_658 (Conv2D) (None, 56, 56, 256) 32768 ['re_lu_61[0][0]']batch_normalization_69 (Ba (None, 56, 56, 256) 1024 ['conv2d_658[0][0]']tchNormalization)add_18 (Add) (None, 56, 56, 256) 0 ['batch_normalization_69[0][0]','re_lu_59[0][0]']re_lu_62 (ReLU) (None, 56, 56, 256) 0 ['add_18[0][0]']conv2d_660 (Conv2D) (None, 56, 56, 256) 65536 ['re_lu_62[0][0]']batch_normalization_71 (Ba (None, 56, 56, 256) 1024 ['conv2d_660[0][0]']tchNormalization)re_lu_63 (ReLU) (None, 56, 56, 256) 0 ['batch_normalization_71[0][0]']concatenate_19 (Concatenat (None, 28, 28, 256) 0 ['conv2d_661[0][0]',e) 'conv2d_662[0][0]',batch_normalization_72 (Ba (None, 28, 28, 256) 1024 ['concatenate_19[0][0]']tchNormalization)re_lu_64 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_72[0][0]']conv2d_693 (Conv2D) (None, 28, 28, 512) 131072 ['re_lu_64[0][0]']conv2d_659 (Conv2D) (None, 28, 28, 512) 131072 ['re_lu_62[0][0]']batch_normalization_73 (Ba (None, 28, 28, 512) 2048 ['conv2d_693[0][0]']tchNormalization)batch_normalization_70 (Ba (None, 28, 28, 512) 2048 ['conv2d_659[0][0]']tchNormalization)add_19 (Add) (None, 28, 28, 512) 0 ['batch_normalization_73[0][0]','batch_normalization_70[0][0]']re_lu_65 (ReLU) (None, 28, 28, 512) 0 ['add_19[0][0]']conv2d_694 (Conv2D) (None, 28, 28, 256) 131072 ['re_lu_65[0][0]']batch_normalization_74 (Ba (None, 28, 28, 256) 1024 ['conv2d_694[0][0]']tchNormalization)re_lu_66 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_74[0][0]']concatenate_20 (Concatenat (None, 28, 28, 256) 0 ['conv2d_695[0][0]',e) 'conv2d_696[0][0]',batch_normalization_75 (Ba (None, 28, 28, 256) 1024 ['concatenate_20[0][0]']tchNormalization)re_lu_67 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_75[0][0]']conv2d_727 (Conv2D) (None, 28, 28, 512) 131072 ['re_lu_67[0][0]']batch_normalization_76 (Ba (None, 28, 28, 512) 2048 ['conv2d_727[0][0]']tchNormalization)add_20 (Add) (None, 28, 28, 512) 0 ['batch_normalization_76[0][0]','re_lu_65[0][0]']re_lu_68 (ReLU) (None, 28, 28, 512) 0 ['add_20[0][0]']conv2d_728 (Conv2D) (None, 28, 28, 256) 131072 ['re_lu_68[0][0]']batch_normalization_77 (Ba (None, 28, 28, 256) 1024 ['conv2d_728[0][0]']tchNormalization)re_lu_69 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_77[0][0]']concatenate_21 (Concatenat (None, 28, 28, 256) 0 ['conv2d_729[0][0]',e) 'conv2d_730[0][0]',batch_normalization_78 (Ba (None, 28, 28, 256) 1024 ['concatenate_21[0][0]']tchNormalization)re_lu_70 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_78[0][0]']conv2d_761 (Conv2D) (None, 28, 28, 512) 131072 ['re_lu_70[0][0]']batch_normalization_79 (Ba (None, 28, 28, 512) 2048 ['conv2d_761[0][0]']tchNormalization)add_21 (Add) (None, 28, 28, 512) 0 ['batch_normalization_79[0][0]','re_lu_68[0][0]']re_lu_71 (ReLU) (None, 28, 28, 512) 0 ['add_21[0][0]']conv2d_762 (Conv2D) (None, 28, 28, 256) 131072 ['re_lu_71[0][0]']batch_normalization_80 (Ba (None, 28, 28, 256) 1024 ['conv2d_762[0][0]']tchNormalization)re_lu_72 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_80[0][0]']concatenate_22 (Concatenat (None, 28, 28, 256) 0 ['conv2d_763[0][0]',e) 'conv2d_764[0][0]',batch_normalization_81 (Ba (None, 28, 28, 256) 1024 ['concatenate_22[0][0]']tchNormalization)re_lu_73 (ReLU) (None, 28, 28, 256) 0 ['batch_normalization_81[0][0]']conv2d_795 (Conv2D) (None, 28, 28, 512) 131072 ['re_lu_73[0][0]']batch_normalization_82 (Ba (None, 28, 28, 512) 2048 ['conv2d_795[0][0]']tchNormalization)add_22 (Add) (None, 28, 28, 512) 0 ['batch_normalization_82[0][0]','re_lu_71[0][0]']re_lu_74 (ReLU) (None, 28, 28, 512) 0 ['add_22[0][0]']conv2d_797 (Conv2D) (None, 28, 28, 512) 262144 ['re_lu_74[0][0]']batch_normalization_84 (Ba (None, 28, 28, 512) 2048 ['conv2d_797[0][0]']tchNormalization)re_lu_75 (ReLU) (None, 28, 28, 512) 0 ['batch_normalization_84[0][0]']concatenate_23 (Concatenat (None, 14, 14, 512) 0 ['conv2d_798[0][0]',e) 'conv2d_799[0][0]',batch_normalization_85 (Ba (None, 14, 14, 512) 2048 ['concatenate_23[0][0]']tchNormalization)re_lu_76 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_85[0][0]']conv2d_830 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_76[0][0]']conv2d_796 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_74[0][0]']batch_normalization_86 (Ba (None, 14, 14, 1024) 4096 ['conv2d_830[0][0]']tchNormalization)batch_normalization_83 (Ba (None, 14, 14, 1024) 4096 ['conv2d_796[0][0]']tchNormalization)add_23 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_86[0][0]','batch_normalization_83[0][0]']re_lu_77 (ReLU) (None, 14, 14, 1024) 0 ['add_23[0][0]']conv2d_831 (Conv2D) (None, 14, 14, 512) 524288 ['re_lu_77[0][0]']batch_normalization_87 (Ba (None, 14, 14, 512) 2048 ['conv2d_831[0][0]']tchNormalization)re_lu_78 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_87[0][0]']concatenate_24 (Concatenat (None, 14, 14, 512) 0 ['conv2d_832[0][0]',e) 'conv2d_833[0][0]',batch_normalization_88 (Ba (None, 14, 14, 512) 2048 ['concatenate_24[0][0]']tchNormalization)re_lu_79 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_88[0][0]']conv2d_864 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_79[0][0]']batch_normalization_89 (Ba (None, 14, 14, 1024) 4096 ['conv2d_864[0][0]']tchNormalization)add_24 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_89[0][0]','re_lu_77[0][0]']re_lu_80 (ReLU) (None, 14, 14, 1024) 0 ['add_24[0][0]']conv2d_865 (Conv2D) (None, 14, 14, 512) 524288 ['re_lu_80[0][0]']batch_normalization_90 (Ba (None, 14, 14, 512) 2048 ['conv2d_865[0][0]']tchNormalization)re_lu_81 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_90[0][0]']concatenate_25 (Concatenat (None, 14, 14, 512) 0 ['conv2d_866[0][0]',e) 'conv2d_867[0][0]',batch_normalization_91 (Ba (None, 14, 14, 512) 2048 ['concatenate_25[0][0]']tchNormalization)re_lu_82 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_91[0][0]']conv2d_898 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_82[0][0]']batch_normalization_92 (Ba (None, 14, 14, 1024) 4096 ['conv2d_898[0][0]']tchNormalization)add_25 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_92[0][0]','re_lu_80[0][0]']re_lu_83 (ReLU) (None, 14, 14, 1024) 0 ['add_25[0][0]']conv2d_899 (Conv2D) (None, 14, 14, 512) 524288 ['re_lu_83[0][0]']batch_normalization_93 (Ba (None, 14, 14, 512) 2048 ['conv2d_899[0][0]']tchNormalization)re_lu_84 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_93[0][0]']concatenate_26 (Concatenat (None, 14, 14, 512) 0 ['conv2d_900[0][0]',e) 'conv2d_901[0][0]',batch_normalization_94 (Ba (None, 14, 14, 512) 2048 ['concatenate_26[0][0]']tchNormalization)re_lu_85 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_94[0][0]']conv2d_932 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_85[0][0]']batch_normalization_95 (Ba (None, 14, 14, 1024) 4096 ['conv2d_932[0][0]']tchNormalization)add_26 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_95[0][0]','re_lu_83[0][0]']re_lu_86 (ReLU) (None, 14, 14, 1024) 0 ['add_26[0][0]']conv2d_933 (Conv2D) (None, 14, 14, 512) 524288 ['re_lu_86[0][0]']batch_normalization_96 (Ba (None, 14, 14, 512) 2048 ['conv2d_933[0][0]']tchNormalization)re_lu_87 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_96[0][0]']concatenate_27 (Concatenat (None, 14, 14, 512) 0 ['conv2d_934[0][0]',e) 'conv2d_935[0][0]',batch_normalization_97 (Ba (None, 14, 14, 512) 2048 ['concatenate_27[0][0]']tchNormalization)re_lu_88 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_97[0][0]']conv2d_966 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_88[0][0]']batch_normalization_98 (Ba (None, 14, 14, 1024) 4096 ['conv2d_966[0][0]']tchNormalization)add_27 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_98[0][0]','re_lu_86[0][0]']re_lu_89 (ReLU) (None, 14, 14, 1024) 0 ['add_27[0][0]']conv2d_967 (Conv2D) (None, 14, 14, 512) 524288 ['re_lu_89[0][0]']batch_normalization_99 (Ba (None, 14, 14, 512) 2048 ['conv2d_967[0][0]']tchNormalization)re_lu_90 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_99[0][0]']concatenate_28 (Concatenat (None, 14, 14, 512) 0 ['conv2d_968[0][0]',e) 'conv2d_969[0][0]',batch_normalization_100 (B (None, 14, 14, 512) 2048 ['concatenate_28[0][0]']atchNormalization)re_lu_91 (ReLU) (None, 14, 14, 512) 0 ['batch_normalization_100[0][0]']conv2d_1000 (Conv2D) (None, 14, 14, 1024) 524288 ['re_lu_91[0][0]']batch_normalization_101 (B (None, 14, 14, 1024) 4096 ['conv2d_1000[0][0]']atchNormalization)add_28 (Add) (None, 14, 14, 1024) 0 ['batch_normalization_101[0][0]','re_lu_89[0][0]']re_lu_92 (ReLU) (None, 14, 14, 1024) 0 ['add_28[0][0]']conv2d_1002 (Conv2D) (None, 14, 14, 1024) 1048576 ['re_lu_92[0][0]']batch_normalization_103 (B (None, 14, 14, 1024) 4096 ['conv2d_1002[0][0]']atchNormalization)re_lu_93 (ReLU) (None, 14, 14, 1024) 0 ['batch_normalization_103[0][0]']concatenate_29 (Concatenat (None, 7, 7, 1024) 0 ['conv2d_1003[0][0]',e) 'conv2d_1004[0][0]',batch_normalization_104 (B (None, 7, 7, 1024) 4096 ['concatenate_29[0][0]']atchNormalization)re_lu_94 (ReLU) (None, 7, 7, 1024) 0 ['batch_normalization_104[0][0]']conv2d_1035 (Conv2D) (None, 7, 7, 2048) 2097152 ['re_lu_94[0][0]']conv2d_1001 (Conv2D) (None, 7, 7, 2048) 2097152 ['re_lu_92[0][0]']batch_normalization_105 (B (None, 7, 7, 2048) 8192 ['conv2d_1035[0][0]']atchNormalization)batch_normalization_102 (B (None, 7, 7, 2048) 8192 ['conv2d_1001[0][0]']atchNormalization)add_29 (Add) (None, 7, 7, 2048) 0 ['batch_normalization_105[0][0]','batch_normalization_102[0][0]']re_lu_95 (ReLU) (None, 7, 7, 2048) 0 ['add_29[0][0]']conv2d_1036 (Conv2D) (None, 7, 7, 1024) 2097152 ['re_lu_95[0][0]']batch_normalization_106 (B (None, 7, 7, 1024) 4096 ['conv2d_1036[0][0]']atchNormalization)re_lu_96 (ReLU) (None, 7, 7, 1024) 0 ['batch_normalization_106[0][0]']concatenate_30 (Concatenat (None, 7, 7, 1024) 0 ['conv2d_1037[0][0]',e) 'conv2d_1038[0][0]',batch_normalization_107 (B (None, 7, 7, 1024) 4096 ['concatenate_30[0][0]']atchNormalization)re_lu_97 (ReLU) (None, 7, 7, 1024) 0 ['batch_normalization_107[0][0]']conv2d_1069 (Conv2D) (None, 7, 7, 2048) 2097152 ['re_lu_97[0][0]']batch_normalization_108 (B (None, 7, 7, 2048) 8192 ['conv2d_1069[0][0]']atchNormalization)add_30 (Add) (None, 7, 7, 2048) 0 ['batch_normalization_108[0][0]','re_lu_95[0][0]']re_lu_98 (ReLU) (None, 7, 7, 2048) 0 ['add_30[0][0]']conv2d_1070 (Conv2D) (None, 7, 7, 1024) 2097152 ['re_lu_98[0][0]']batch_normalization_109 (B (None, 7, 7, 1024) 4096 ['conv2d_1070[0][0]']atchNormalization)re_lu_99 (ReLU) (None, 7, 7, 1024) 0 ['batch_normalization_109[0][0]']concatenate_31 (Concatenat (None, 7, 7, 1024) 0 ['conv2d_1071[0][0]',e) 'conv2d_1072[0][0]',batch_normalization_110 (B (None, 7, 7, 1024) 4096 ['concatenate_31[0][0]']atchNormalization)re_lu_100 (ReLU) (None, 7, 7, 1024) 0 ['batch_normalization_110[0][0]']conv2d_1103 (Conv2D) (None, 7, 7, 2048) 2097152 ['re_lu_100[0][0]']batch_normalization_111 (B (None, 7, 7, 2048) 8192 ['conv2d_1103[0][0]']atchNormalization)add_31 (Add) (None, 7, 7, 2048) 0 ['batch_normalization_111[0][0]','re_lu_98[0][0]']re_lu_101 (ReLU) (None, 7, 7, 2048) 0 ['add_31[0][0]']global_average_pooling2d_1 (None, 2048) 0 ['re_lu_101[0][0]'](GlobalAveragePooling2D)dense_1 (Dense) (None, 1000) 2049000 ['global_average_pooling2d_1[0][0]']
观察Add的connected to,发现全都是一样的,并没有出现不一致的情况,竟然和我想的不一样,并没有使用什么广播机制。仔细观察模型的过程才发现,stack的block中,x和filters通道不一致,此时如果直接相加会报错,所以第一个block做了一个通道数*2的卷积。由于后续的filters没有变,输出的通道都是filters*2,所以也可以直接相加。
相关文章:

J7 - 对于ResNeXt-50算法的思考
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 J6周有一段代码如下 思考过程 首先看到这个问题的描述,想到的是可能使用了向量操作的广播机制然后就想想办法验证一下&…...
R3F(React Three Fiber)基础篇
之前一直在做ThreeJS方向,整理了两篇R3F(React Three Fiber)的文档,这是基础篇,如果您的业务场景需要使用R3F,您又对R3F不太了解,或者不想使用R3F全英文文档,您可以参考一下这篇&…...
torch\tensorflow在大语言模型LLM中的作用
文章目录 torch\tensorflow在大语言模型LLM中的作用 torch\tensorflow在大语言模型LLM中的作用 在大型语言模型(LLM)中,PyTorch和TensorFlow这两个深度学习框架起着至关重要的作用。它们为构建、训练和部署LLM提供了必要的工具和基础设施。 …...

设计模式-创建型模式-单例模式
0 引言 创建型模式(Creational Pattern)关注对象的创建过程,是一类最常用的设计模式,每个创建型模式都通过采用不同的解决方案来回答3个问题:创建什么(What),由谁创建(W…...

备战蓝桥杯—— 双指针技巧巧答链表1
对于单链表相关的问题,双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决: 合并两个有序链表: 使用两个指针分别指向两个链表的头部,逐一比较节点的值,将较小的节点链接到结果链表…...
微信小程序返回上一级页面并自动刷新数据
文章目录 前言一、获取小程序栈二、生命周期触发总结 前言 界面由A到B,在由B返回A,触发刷新动作 一、获取小程序栈 界面A代码 shuaxin(){//此处可进行接口请求从而实现更新数据的效果console.log("刷新本页面数据啦")},界面B代码 // 返回触…...

Spring⼯⼚创建复杂对象
文章目录 5. Spring⼯⼚创建复杂对象5.1 什么是复杂对象5.2 Spring⼯⼚创建复杂对象的3种⽅式5.2.1 FactoryBean 接口5.2.2 实例⼯⼚5.2.3 静态工厂 5.3 Spring 工厂的总结 6. 控制Spring⼯⼚创建对象的次数6.1 如何控制简单对象的创建次数6.2 如何控制复杂对象的创建次数6.3 为…...
Top-N 泛型工具类
一、代码实现 通过封装 PriorityQueue 实现,PriorityQueue 本质上是完全二叉树实现的小根堆(相对来说,如果比较器反向比较则是大根堆)。 public class TopNUtil<E extends Comparable<E>> {private final PriorityQ…...

Java 后端面试指南
面试指南 TMD,一个后端为什么要了解那么多的知识,真是服了。啥啥都得了解 MySQL MySQL索引可能在以下几种情况下失效: 不遵循最左匹配原则:在联合索引中,如果没有使用索引的最左前缀,即查询条件中没有包含…...

142.环形链表 ||
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整…...
Nacos、Eureka、Zookeeper注册中心的区别
Nacos、Eureka和Zookeeper都是常用的注册中心,它们在功能和实现方式上存在一些不同。 Nacos除了作为注册中心外,还提供了配置管理、服务发现和事件通知等功能。Nacos默认情况下采用AP架构保证服务可用性,CP架构底层采用Raft协议保证数据的一…...

CSS重点知识整理1
目录 1 平面位移 1.1 基本使用 1.2 单独方向的位移 1.3 使用平面位移实现绝对位置居中 2 平面旋转 2.1 基本使用 2.2 圆点转换 2.3 多重转换 3 平面缩放 3.1 基本使用 3.2 渐变的使用 4 空间转换 4.1 空间位移 4.1.1 基本使用 4.1.2 透视 4.2 空间旋转 4.3 立…...

【Langchain多Agent实践】一个有推销功能的旅游聊天机器人
【LangchainStreamlit】旅游聊天机器人_langchain streamlit-CSDN博客 视频讲解地址:【Langchain Agent】带推销功能的旅游聊天机器人_哔哩哔哩_bilibili 体验地址: http://101.33.225.241:8503/ github地址:GitHub - jerry1900/langcha…...

算法学习(十二)并查集
并查集 1. 概念 并查集主要用于解决一些 元素分组 问题,通过以下操作管理一系列不相交的集合: 合并(Union):把两个不相交的集合合并成一个集合 查询(Find):查询两个元素是否在同一…...

TensorRT及CUDA自学笔记003 NVCC及其命令行参数
TensorRT及CUDA自学笔记003 NVCC及其命令行参数 各位大佬,这是我的自学笔记,如有错误请指正,也欢迎在评论区学习交流,谢谢! NVCC是一种编译器,基于一些命令行参数可以将使用PTX或C语言编写的代码编译成可…...

数据库管理-第154期 Oracle Vector DB AI-06(20240223)
数据库管理154期 2024-02-23 数据库管理-第154期 Oracle Vector DB & AI-06(20240223)1 环境准备创建表空间及用户TNSNAME配置 2 Oracle Vector的DML操作创建示例表插入基础数据DML操作UPDATE操作DELETE操作 3 多Vector列表4 固定维度的向量操作5 不…...
解决uni-app vue3 nvue中使用pinia页面空白问题
main.js中,最关键的就是Pinia要return出去的问题,至于原因嘛! 很忙啊,先用着吧 import App from ./App import * as Pinia from pinia import { createSSRApp } from vue export function createApp() {const app createSSRApp(App);app.us…...

不用加减乘除做加法
1.题目: 写一个函数,求两个整数之和,要求在函数体内不得使用、-、*、/四则运算符号。 数据范围:两个数都满足 −10≤�≤1000−10≤n≤1000 进阶:空间复杂度 �(1)O(1),时间复杂度 &am…...

旅游组团自驾游拼团系统 微信小程序python+java+node.js+php
随着社会的发展,旅游业已成为全球经济中发展势头最强劲和规模最大的产业之一。为方便驴友出行,寻找旅游伙伴,更好的规划旅游计划,开发一款自驾游拼团小程序,通过微信小程序发起自驾游拼团,吸收有车或无车驴…...
LeetCode 第41天 | 背包问题 二维数组 一维数组 416.分割等和子集 动态规划
46. 携带研究材料(第六期模拟笔试) 题目描述 小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...