2023thupc总结
A 大富翁
很有意思的题
∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx\sum_{x\in A}\sum_{y\in B}[x支配y]-\sum_{x\in A}\sum_{y\in B}[y支配x]-\sum_{x\in A}w_x∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx
=∑x∈A∑y[x支配y]−∑x∈A∑y[y支配x]−∑x∈Awx=\sum_{x\in A}\sum_{y}[x支配y]-\sum_{x\in A}\sum_{y}[y支配x]-\sum_{x\in A}w_x=∑x∈A∑y[x支配y]−∑x∈A∑y[y支配x]−∑x∈Awx
=∑x∈Asizx−∑x∈Adepx−∑x∈Awx=\sum_{x\in A}siz_x-\sum_{x\in A}dep_x-\sum_{x\in A}w_x=∑x∈Asizx−∑x∈Adepx−∑x∈Awx
这样每个点的贡献就确定了
排序后取奇数位
C 快速最小公倍数变换
考虑把贡献改写成一个只跟rir_iri相关,只跟rjr_jrj相关,只跟ri+rjr_i+r_jri+rj相关的三个数的乘积
设vp(x)v_p(x)vp(x)表示质数ppp在xxx质因数分解中的指数大小,MpM_pMp表示所有vp(ai)v_p(a_i)vp(ai)的最大值,mpm_pmp所有vp(ai)v_p(a_i)vp(ai)的非严格次大值
考虑算出MpM_pMp在操作之后的改变值ΔMp\Delta M_pΔMp
ΔMp=([vp(ri)=Mp]+[vp(rj)=Mp])(mp−Mp)+max(vp(ri+rj)−Mp,0)\Delta M_p=([v_p(r_i)=M_p]+[v_p(r_j)=M_p])(m_p-M_p)+\max(v_p(r_i+r_j)-M_p,0)ΔMp=([vp(ri)=Mp]+[vp(rj)=Mp])(mp−Mp)+max(vp(ri+rj)−Mp,0)
证明
当[vp(ri)=Mp]=0,[vp(rj)=Mp]=0[v_p(r_i)=M_p]=0,[v_p(r_j)=M_p]=0[vp(ri)=Mp]=0,[vp(rj)=Mp]=0时,显然满足
当[vp(ri)=Mp]=1,[vp(rj)=Mp]=0[v_p(r_i)=M_p]=1,[v_p(r_j)=M_p]=0[vp(ri)=Mp]=1,[vp(rj)=Mp]=0时,vp(ri+rj)=vp(rj)<Mpv_p(r_i+r_j)=v_p(r_j)<M_pvp(ri+rj)=vp(rj)<Mp,满足
当[vp(ri)=Mp]=0,[vp(rj)=Mp]=1[v_p(r_i)=M_p]=0,[v_p(r_j)=M_p]=1[vp(ri)=Mp]=0,[vp(rj)=Mp]=1时,与上种情况类似
当[vp(ri)=Mp]=1,[vp(rj)=Mp]=1[v_p(r_i)=M_p]=1,[v_p(r_j)=M_p]=1[vp(ri)=Mp]=1,[vp(rj)=Mp]=1时,mp=Mpm_p=M_pmp=Mp,满足
然后就能用nttnttntt优化了
相关文章:
2023thupc总结
A 大富翁 很有意思的题 ∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx\sum_{x\in A}\sum_{y\in B}[x支配y]-\sum_{x\in A}\sum_{y\in B}[y支配x]-\sum_{x\in A}w_x∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx ∑x∈A∑y[x支配y]−∑x∈A∑y[y支…...

【数据库】MySQL数据库基础
目录 1.数据库: 2.数据库基本操作 2.1 MySQL的运行原理 2.2显示数据库: 2.3创建数据库 2.4使用数据库 2.5删除数据库 3.常见的数据类型 3.1数值类型: 3.2字符型类型 3.3日期类型 4.表的操作 4.1创建表 4.2查看表 4.3删除表 5.汇总…...

grid了解
结构 <div class"grid"><div>1</div><div>2</div><div>3</div><div>4</div><div>5</div><div>6</div><div>7</div><div>8</div><div>9</div>&l…...
2023年全国最新工会考试精选真题及答案13
百分百题库提供工会考试试题、工会考试预测题、工会考试真题、工会证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 81.女职工委员会在()下开展工作。 A.企业工会委员会领导 B.企业工会委员会指导 …...

初识HTML技术
文章目录一、为什么学习前端?二、第一个HTML文件VSCode三. HTML元素四. HTML页面一、为什么学习前端? 我们作为一个后端程序员,为什么还要学习前端,因为我们的终极目的是实现web开发,搭建网站,网站 前端 后端 比如我们随便…...
我们为什么要用消息队列?
消息队列是系统设计中存在时间最长的中间件之一,从系统有通信需求开始,就产生了消息队列。 消息队列的使用场景 在日常系统设计与实现的过程中,下面3种场景会涉及到消息队列: 异步处理流量控制服务解耦 异步处理 典型的应用场…...

Linux进程控制
进程控制fork函数进程终止退出码常见的退出方式进程等待什么是进程等待,为什么要进程等待阻塞与非阻塞进程替换替换原理替换函数执行系统命令执行自己写的程序模拟实现简易的shellfork函数 fork函数是创建一个子进程,之前用过。 #include <unistd.h…...

PMP项目管理引论介绍
目录1. 指南概述和目的1.1 项目管理标准1.2 道德与专业行为规范2 基本要素2.1 项目2.2 项目管理的重要性2.3 项目、项目集、项目组合以及运营管理之间的关系2.3.1 概述2.3.2. 项目组合与项目集管理2.3.3. 运营管理2.3.4. 组织级项目管理和战略2.3.5. 项目管理2.3.6. 运营管理与…...

计算机视觉废钢堆提取问题
计算机视觉废钢堆提取问题 背景介绍 在钢铁炼制中,废钢是非常重要的原料,不同等级废钢对于钢成品影响很大,因此需要对废钢进行正确分类。某废钢料场中,卸料区域布置了多个摄像头,用于拍摄卸料场中废钢堆,…...
判断水仙花数-课后程序(Python程序开发案例教程-黑马程序员编著-第二章-课后作业)
实例5:判断水仙花数 水仙花数是一个3位数,它的每位数字的3次幂之和等于它本身,例如13 53 33 153,153就是一个水仙花数。 本实例要求编写程序,实现判断用户输入的3位数是否为水仙花数的功能。 实例目标 掌握Pytho…...

目标检测: 数据增强代码详解
1. 常见的数据增强 1.1 翻转图像 左右水平翻转 假设图片的宽高为w,h,bdbox左上角A坐标为(x1,y1), 右下角B为(x2,y2)。经过左右水平翻转后,bdbox的左上角A1坐标(w-x2,y1) ,右下角B1坐标为(w-x1,y2)左右水平翻转的代码实现如下:from PIL import Image image = Image.open(i…...

第二讲:ambari编译复盘,如何实现一次性成功编译ambari
上节课我们已经讲解了如何成功编译ambari源码,安装ambari-server rpm包以及成功部署ambari。本节课我们来复盘一下上节课的编译过程,以及思考如何实现一次性成功编译ambari。 要想一次性成功编译ambari,那么就需要将预置工作做好,比如: maven镜像源配置,node_moudle模块…...

Windows下jdk安装与卸载-超详细的图文教程
jdk安装 下载jdk 由于现在主流就是jdk1.8,所以这里就下载jdk1.8进行演示。官方下载地址:https://www.oracle.com/java/technologies/downloads/#java8-windows。 官方下载需要注册oracle账号,国内下载有可能速度慢,若不想注册账…...

Jackson CVE-2018-5968 反序列化漏洞
0x00 前言 同CVE-2017-15095一样,是CVE-2017-7525黑名单绕过的漏洞,主要还是看一下绕过的调用链利用方式。 可以先看: Jackson 反序列化漏洞原理 或者直接看总结也可以: Jackson总结 影响版本:至2.8.11和2.9.x至…...
解析MySQL 8.0 OCP(1Z0-908)考试中一道大部分同学都会做错的题目
一个用户有下面的权限: mysql>SHOW GRANTS FOR jsmith;---------------------------------------------------------------------- | Grants for jsmith% | ----------------------------------------------------------…...
Java死锁
什么是死锁? 多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。 死锁的必要条件: 1、互斥条件:该资源任意一个时刻只由一个线程占用。 2、请求与…...

BloomFilter原理学习
文章目录BloomFilter简单介绍BloomFilter中的数学知识fpp(误判率/假阳性)的计算k的最小值公式总结编程语言实现golang的实现[已知n, p求m和k](https://github.com/bits-and-blooms/bloom/blob/master/bloom.go#L133)参考BloomFilter简单介绍 BloomFilter我们可能经常听到也在使…...
C语言老题新解第1-5题
文章目录1 互不相同且无重复数字2 企业利润提成3 两个完全平方数4 判断一年的第几天5 三个整数比较大小1 互不相同且无重复数字 1 有1, 2, 3, 4四个数字,能组成多少互不相同且无重复数字的三位数?都是多少? 最简单当然是三重循环嵌套在一起…...

【数据库系列】MQSQL历史数据分区
互联网行业企业都倾向于mysql数据库,虽说mysql单表能支持亿级别的数据量,加上索引优化下查询速度,勉强能使用,但是对于追求性能和效率的互联网企业,这是远远不够的。Mysql数据库单表数据量到达500万左右,达…...
MyBatis常用的俩种分页方式
1、使用 limit 实现分页 select * from xxx limit m,n # m 表示从第几条数据开始,默认从0开始 # n 表示查询几条数据 select * from xxx limit 2,3 # 从索引为2的数据开始,往后查询三个。2、3、4 (1) 创建分页对象,用来封装分页的数据 PS…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...