当前位置: 首页 > news >正文

2023thupc总结

A 大富翁
很有意思的题
∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx\sum_{x\in A}\sum_{y\in B}[x支配y]-\sum_{x\in A}\sum_{y\in B}[y支配x]-\sum_{x\in A}w_xxAyB[x支配y]xAyB[y支配x]xAwx
=∑x∈A∑y[x支配y]−∑x∈A∑y[y支配x]−∑x∈Awx=\sum_{x\in A}\sum_{y}[x支配y]-\sum_{x\in A}\sum_{y}[y支配x]-\sum_{x\in A}w_x=xAy[x支配y]xAy[y支配x]xAwx
=∑x∈Asizx−∑x∈Adepx−∑x∈Awx=\sum_{x\in A}siz_x-\sum_{x\in A}dep_x-\sum_{x\in A}w_x=xAsizxxAdepxxAwx
这样每个点的贡献就确定了
排序后取奇数位

C 快速最小公倍数变换
考虑把贡献改写成一个只跟rir_iri相关,只跟rjr_jrj相关,只跟ri+rjr_i+r_jri+rj相关的三个数的乘积
vp(x)v_p(x)vp(x)表示质数pppxxx质因数分解中的指数大小,MpM_pMp表示所有vp(ai)v_p(a_i)vp(ai)的最大值,mpm_pmp所有vp(ai)v_p(a_i)vp(ai)的非严格次大值
考虑算出MpM_pMp在操作之后的改变值ΔMp\Delta M_pΔMp
ΔMp=([vp(ri)=Mp]+[vp(rj)=Mp])(mp−Mp)+max⁡(vp(ri+rj)−Mp,0)\Delta M_p=([v_p(r_i)=M_p]+[v_p(r_j)=M_p])(m_p-M_p)+\max(v_p(r_i+r_j)-M_p,0)ΔMp=([vp(ri)=Mp]+[vp(rj)=Mp])(mpMp)+max(vp(ri+rj)Mp,0)
证明
[vp(ri)=Mp]=0,[vp(rj)=Mp]=0[v_p(r_i)=M_p]=0,[v_p(r_j)=M_p]=0[vp(ri)=Mp]=0,[vp(rj)=Mp]=0时,显然满足
[vp(ri)=Mp]=1,[vp(rj)=Mp]=0[v_p(r_i)=M_p]=1,[v_p(r_j)=M_p]=0[vp(ri)=Mp]=1,[vp(rj)=Mp]=0时,vp(ri+rj)=vp(rj)<Mpv_p(r_i+r_j)=v_p(r_j)<M_pvp(ri+rj)=vp(rj)<Mp,满足
[vp(ri)=Mp]=0,[vp(rj)=Mp]=1[v_p(r_i)=M_p]=0,[v_p(r_j)=M_p]=1[vp(ri)=Mp]=0,[vp(rj)=Mp]=1时,与上种情况类似
[vp(ri)=Mp]=1,[vp(rj)=Mp]=1[v_p(r_i)=M_p]=1,[v_p(r_j)=M_p]=1[vp(ri)=Mp]=1,[vp(rj)=Mp]=1时,mp=Mpm_p=M_pmp=Mp,满足
然后就能用nttnttntt优化了

相关文章:

2023thupc总结

A 大富翁 很有意思的题 ∑x∈A∑y∈B[x支配y]−∑x∈A∑y∈B[y支配x]−∑x∈Awx\sum_{x\in A}\sum_{y\in B}[x支配y]-\sum_{x\in A}\sum_{y\in B}[y支配x]-\sum_{x\in A}w_x∑x∈A​∑y∈B​[x支配y]−∑x∈A​∑y∈B​[y支配x]−∑x∈A​wx​ ∑x∈A∑y[x支配y]−∑x∈A∑y[y支…...

【数据库】MySQL数据库基础

目录 1.数据库&#xff1a; 2.数据库基本操作 2.1 MySQL的运行原理 2.2显示数据库&#xff1a; 2.3创建数据库 2.4使用数据库 2.5删除数据库 3.常见的数据类型 3.1数值类型&#xff1a; 3.2字符型类型 3.3日期类型 4.表的操作 4.1创建表 4.2查看表 4.3删除表 5.汇总…...

grid了解

结构 <div class"grid"><div>1</div><div>2</div><div>3</div><div>4</div><div>5</div><div>6</div><div>7</div><div>8</div><div>9</div>&l…...

2023年全国最新工会考试精选真题及答案13

百分百题库提供工会考试试题、工会考试预测题、工会考试真题、工会证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 81.女职工委员会在&#xff08;&#xff09;下开展工作。 A.企业工会委员会领导 B.企业工会委员会指导 …...

初识HTML技术

文章目录一、为什么学习前端?二、第一个HTML文件VSCode三. HTML元素四. HTML页面一、为什么学习前端? 我们作为一个后端程序员&#xff0c;为什么还要学习前端&#xff0c;因为我们的终极目的是实现web开发&#xff0c;搭建网站&#xff0c;网站 前端 后端 比如我们随便…...

我们为什么要用消息队列?

消息队列是系统设计中存在时间最长的中间件之一&#xff0c;从系统有通信需求开始&#xff0c;就产生了消息队列。 消息队列的使用场景 在日常系统设计与实现的过程中&#xff0c;下面3种场景会涉及到消息队列&#xff1a; 异步处理流量控制服务解耦 异步处理 典型的应用场…...

Linux进程控制

进程控制fork函数进程终止退出码常见的退出方式进程等待什么是进程等待&#xff0c;为什么要进程等待阻塞与非阻塞进程替换替换原理替换函数执行系统命令执行自己写的程序模拟实现简易的shellfork函数 fork函数是创建一个子进程&#xff0c;之前用过。 #include <unistd.h…...

PMP项目管理引论介绍

目录1. 指南概述和目的1.1 项目管理标准1.2 道德与专业行为规范2 基本要素2.1 项目2.2 项目管理的重要性2.3 项目、项目集、项目组合以及运营管理之间的关系2.3.1 概述2.3.2. 项目组合与项目集管理2.3.3. 运营管理2.3.4. 组织级项目管理和战略2.3.5. 项目管理2.3.6. 运营管理与…...

计算机视觉废钢堆提取问题

计算机视觉废钢堆提取问题 背景介绍 在钢铁炼制中&#xff0c;废钢是非常重要的原料&#xff0c;不同等级废钢对于钢成品影响很大&#xff0c;因此需要对废钢进行正确分类。某废钢料场中&#xff0c;卸料区域布置了多个摄像头&#xff0c;用于拍摄卸料场中废钢堆&#xff0c;…...

判断水仙花数-课后程序(Python程序开发案例教程-黑马程序员编著-第二章-课后作业)

实例5&#xff1a;判断水仙花数 水仙花数是一个3位数&#xff0c;它的每位数字的3次幂之和等于它本身&#xff0c;例如13 53 33 153&#xff0c;153就是一个水仙花数。 本实例要求编写程序&#xff0c;实现判断用户输入的3位数是否为水仙花数的功能。 实例目标 掌握Pytho…...

目标检测: 数据增强代码详解

1. 常见的数据增强 1.1 翻转图像 左右水平翻转 假设图片的宽高为w,h,bdbox左上角A坐标为(x1,y1), 右下角B为(x2,y2)。经过左右水平翻转后,bdbox的左上角A1坐标(w-x2,y1) ,右下角B1坐标为(w-x1,y2)左右水平翻转的代码实现如下:from PIL import Image image = Image.open(i…...

第二讲:ambari编译复盘,如何实现一次性成功编译ambari

上节课我们已经讲解了如何成功编译ambari源码,安装ambari-server rpm包以及成功部署ambari。本节课我们来复盘一下上节课的编译过程,以及思考如何实现一次性成功编译ambari。 要想一次性成功编译ambari,那么就需要将预置工作做好,比如: maven镜像源配置,node_moudle模块…...

Windows下jdk安装与卸载-超详细的图文教程

jdk安装 下载jdk 由于现在主流就是jdk1.8&#xff0c;所以这里就下载jdk1.8进行演示。官方下载地址&#xff1a;https://www.oracle.com/java/technologies/downloads/#java8-windows。 官方下载需要注册oracle账号&#xff0c;国内下载有可能速度慢&#xff0c;若不想注册账…...

Jackson CVE-2018-5968 反序列化漏洞

0x00 前言 同CVE-2017-15095一样&#xff0c;是CVE-2017-7525黑名单绕过的漏洞&#xff0c;主要还是看一下绕过的调用链利用方式。 可以先看&#xff1a; Jackson 反序列化漏洞原理 或者直接看总结也可以&#xff1a; Jackson总结 影响版本&#xff1a;至2.8.11和2.9.x至…...

解析MySQL 8.0 OCP(1Z0-908)考试中一道大部分同学都会做错的题目

一个用户有下面的权限: mysql>SHOW GRANTS FOR jsmith;---------------------------------------------------------------------- | Grants for jsmith% | ----------------------------------------------------------…...

Java死锁

什么是死锁&#xff1f; 多个线程同时被阻塞&#xff0c;它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞&#xff0c;因此程序不可能正常终止。 死锁的必要条件&#xff1a; 1、互斥条件&#xff1a;该资源任意一个时刻只由一个线程占用。 2、请求与…...

BloomFilter原理学习

文章目录BloomFilter简单介绍BloomFilter中的数学知识fpp(误判率/假阳性)的计算k的最小值公式总结编程语言实现golang的实现[已知n, p求m和k](https://github.com/bits-and-blooms/bloom/blob/master/bloom.go#L133)参考BloomFilter简单介绍 BloomFilter我们可能经常听到也在使…...

C语言老题新解第1-5题

文章目录1 互不相同且无重复数字2 企业利润提成3 两个完全平方数4 判断一年的第几天5 三个整数比较大小1 互不相同且无重复数字 1 有1, 2, 3, 4四个数字&#xff0c;能组成多少互不相同且无重复数字的三位数&#xff1f;都是多少&#xff1f; 最简单当然是三重循环嵌套在一起…...

【数据库系列】MQSQL历史数据分区

互联网行业企业都倾向于mysql数据库&#xff0c;虽说mysql单表能支持亿级别的数据量&#xff0c;加上索引优化下查询速度&#xff0c;勉强能使用&#xff0c;但是对于追求性能和效率的互联网企业&#xff0c;这是远远不够的。Mysql数据库单表数据量到达500万左右&#xff0c;达…...

MyBatis常用的俩种分页方式

1、使用 limit 实现分页 select * from xxx limit m,n # m 表示从第几条数据开始&#xff0c;默认从0开始 # n 表示查询几条数据 select * from xxx limit 2,3 # 从索引为2的数据开始&#xff0c;往后查询三个。2、3、4 (1) 创建分页对象&#xff0c;用来封装分页的数据 PS…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...