BloomFilter原理学习
文章目录
- BloomFilter简单介绍
- BloomFilter中的数学知识
- fpp(误判率/假阳性)的计算
- k的最小值
- 公式总结
- 编程语言实现
- golang的实现
- [已知n, p求m和k](https://github.com/bits-and-blooms/bloom/blob/master/bloom.go#L133)
- 参考
BloomFilter简单介绍
BloomFilter我们可能经常听到也在使用, 它的特点是如果判断结果为"不存在", 则一定不存在; 如果判断为存在, 则可能存在. 如下图示例说明当我们判断z元素存在时, 其实是不存在的, 即存在有概率性.
如上图, 长为m=16的二进制向量, 初始全为0; k=3(即添加一个元素需要将3个bit设置为1), 对n=3个元素进行添加操作.
BloomFilter几个关键量定义:
m
: 二进制向量大小(多少个二进制位)
n
: 要存放的元素个数
k
: 哈希函数的个数, 或者说每添加一个元素都要进行k次计算
fpp
或者简写为p
: 误判率(false positive rate), 即 使用bloomfilter判断为存在时, 但实际不存在的概率
BloomFilter中的数学知识
fpp(误判率/假阳性)的计算
BloomFilter主要的数学原理是: 在某一范围内(1<=x<=m)1<=x<=m)1<=x<=m)(x为整数, m通常是很大的, 如106级别10^6级别106级别), 任意选取两个整数i,j,i和j可重复选取i, j, i和j可重复选取i,j,i和j可重复选取, 则其相等的概率是非常小的: mm2=1m\dfrac{m}{m^2}=\dfrac{1}{m}m2m=m1
我们假定hash计算是均匀的, 即每次hash会随机地将m
位中的一位设置为1
. 那么:
- 一次hash计算(如h1(x)h1(x)h1(x))后, 任一位被 置为1 的概率为: 1m\dfrac{1}{m}m1
- 一次hash计算(如h1(x)h1(x)h1(x))后, 任一位 还是0(即未被置为1) 的概率为: 1−1m1 - \dfrac{1}{m}1−m1
- 添加一个元素(如
bloomFilter.Add(x)
, 即执行k次hash)后, 任一位还是0的概率为: (1−1m)k(1 - \dfrac{1}{m})^k(1−m1)k - 添加n个元素后(如上图中的n=3个元素:x,y,z), 任一位还是0的概率为: (1−1m)kn(1 - \dfrac{1}{m})^{kn}(1−m1)kn , 任一位为1的概率为 1−(1−1m)kn1- (1 - \dfrac{1}{m})^{kn}1−(1−m1)kn
- 如果将1个新的元素,添加到已存在n个元素的BloomFilter中,则任一位已经为1的概率与上面相同,为:1−(1−1m)kn1- (1 - \dfrac{1}{m})^{kn}1−(1−m1)kn .
那么添加这个新元素时, k个比特都为1(相当于新元素和已有元素已经分不清了)的概率(此即为新插入元素的误识别率)为:
p=[1−(1−1m)kn]kp = [1- (1 - \dfrac{1}{m})^{kn}]^{k} p=[1−(1−m1)kn]k
通常来说, m是一个非常大的数(1MiB内存就有220×8≈800万2^{20}\times{8}\approx 800万220×8≈800万个bit), 并且我们有: limx→∞(1+x)1x=e{ \lim\limits_{x \to \infin} (1+x)^{\frac{1}{x}} = e}x→∞lim(1+x)x1=e
那么在工程实践中, 可以认为p的近似值为:
p=[1−(1−1m)kn]k=[1−(1−1m)−m×−knm]k≈(1−e−knm)k(当m很大时,将−1m看作x)\begin{aligned} p &= [1- (1 - \dfrac{1}{m})^{kn}]^{k} \\ &= [1- (1 - \dfrac{1}{m})^{-m\times\frac{-kn}{m}}]^{k} \\ &\approx (1-e^{-\frac{kn}{m}})^{k} \enspace (当m很大时, 将 -\dfrac{1}{m}看 作x) \end{aligned} p=[1−(1−m1)kn]k=[1−(1−m1)−m×m−kn]k≈(1−e−mkn)k(当m很大时,将−m1看作x)
k的最小值
计算过程参考: https://cs.stackexchange.com/questions/132088/how-is-the-optimal-number-of-hashes-is-derived-in-bloom-filter
已经遗忘的知识:
- 求导公式: (lnx)′=1x(\ln{x})^{'} = \dfrac{1}{x}(lnx)′=x1
- 求导公式: (enx)′=nenx(\bold{e}^{nx})^{'} = n\bold{e}^{nx}(enx)′=nenx
在某些情况下, 我们对n
, m
, 的值可以给一个估算值, 以此来获得最小的p
(即尽可能准确判断), 那么k
就是一个变量了, 问题就变为求 (1−e−knm)k(1-e^{-\frac{kn}{m}})^{k}(1−e−mkn)k的最小值.
令f(k)=(1−e−knm)kf(k)=(1-e^{-\frac{kn}{m}})^{k}f(k)=(1−e−mkn)k, 那么
两边取对数有:lnf(k)=ln(1−e−knm)k=kln(1−e−knm)设g(k)=kln(1−e−knm),那么:g′(k)=ln(1−e−knm)+knme−knm1−e−knm令x=e−knm,x∈(0,1),那么有h(x)=ln(1−x)−x1−xlnx(注意k用−mnlnx替换)=(1−x)ln(1−x)−xlnx1−x(x∈0,1)\begin{aligned} & 两边取对数有: \\ & \ln f(k)=\ln (1-e^{-\frac{kn}{m}})^{k} = k \ln(1-e^{-\frac{kn}{m}}) \\ & 设 g(k) = k\ln{(1-e^{-\frac{kn}{m}})}, 那么:\\ & g{'}(k) = \ln{(1-e^{-\frac{kn}{m}})} + k\dfrac{\frac{n}{m}e^{-\frac{kn}{m}}}{1-e^{-\frac{kn}{m}}} \enspace \\ & 令 x = e^{-\frac{kn}{m}}, x \in(0, 1), 那么有 \\ & h(x) = \ln(1-x) - \dfrac{x}{1-x} \ln x \enspace (注意k用-\dfrac{m}{n}lnx替换) \\ & \enspace \enspace \enspace \enspace = \dfrac{(1-x) \ln(1-x)-x \ln x}{1-x} \enspace (x\in{0, 1}) \end{aligned} 两边取对数有:lnf(k)=ln(1−e−mkn)k=kln(1−e−mkn)设g(k)=kln(1−e−mkn),那么:g′(k)=ln(1−e−mkn)+k1−e−mknmne−mkn令x=e−mkn,x∈(0,1),那么有h(x)=ln(1−x)−1−xxlnx(注意k用−nmlnx替换)=1−x(1−x)ln(1−x)−xlnx(x∈0,1)
对 h(x)=(1−x)ln(1−x)−xlnx1−x(x∈0,1)h(x) = \dfrac{(1-x)\ln(1-x)-x \ln x}{1-x} \enspace (x\in{0, 1})h(x)=1−x(1−x)ln(1−x)−xlnx(x∈0,1), 不难看出:
- 当x=12时,h(x)=0x=\dfrac{1}{2}时, h(x)=0x=21时,h(x)=0
- 当x>12时,h(x)<0x>\dfrac{1}{2}时,h(x)<0x>21时,h(x)<0
- 当x<12时,h(x)>0x<\dfrac{1}{2}时,h(x)>0x<21时,h(x)>0
站在巨人的肩膀上, 我们可以直接在这里看:
显然在x∈(0,1)范围内,当x=0.5时,h(x)最小x\in(0, 1)范围内, 当x=0.5时, h(x)最小x∈(0,1)范围内,当x=0.5时,h(x)最小, 此时k=mnln2k=\dfrac{m}{n}ln2k=nmln2
也就是说:
当k<mnln2k <\dfrac{m}{n}ln2k<nmln2时(想象k非常接近0), x=e−knmx = e^{-\frac{kn}{m}}x=e−mkn会非常接近1, 此时x>12x>\dfrac{1}{2}x>21,
h(x)<0h(x)<0h(x)<0 ⇒ f(k)在变小;
当k>mnln2k >\dfrac{m}{n}ln2k>nmln2时(想象k非常接近0), x=e−knmx = e^{-\frac{kn}{m}}x=e−mkn会非常接近0, 此时x<12x<\dfrac{1}{2}x<21,
h(x)>0h(x)>0h(x)>0 ⇒ f(k)在变大;
所以k=mnln2k=\dfrac{m}{n}ln2k=nmln2时会使得f(k)f(k)f(k)最小, 即此时p最小.
公式总结
- 误判率公式: p=[1−(1−1m)kn]kp = [1- (1 - \dfrac{1}{m})^{kn}]^{k}p=[1−(1−m1)kn]k
- 误判率近似公式(当
m
很大时): p≈(1−e−knm)kp \approx (1-e^{-\frac{kn}{m}})^{k}p≈(1−e−mkn)k - 已知
m
,n
, k的最小值(近似)为: k=mnln2≈0.7mnk=\dfrac{m}{n}\ln{2} \approx 0.7\dfrac{m}{n}k=nmln2≈0.7nm - 已知
n
,p
, 且k取最小时, m=−nlnp(ln2)2m=-\dfrac{n\ln{p}}{(ln2)^{2}}m=−(ln2)2nlnp
编程语言实现
golang的实现
https://github.com/bits-and-blooms/bloom
已知n, p求m和k
func EstimateParameters(n uint, p float64) (m uint, k uint) {m = uint(math.Ceil(-1 * float64(n) * math.Log(p) / math.Pow(math.Log(2), 2)))k = uint(math.Ceil(math.Log(2) * float64(m) / float64(n)))return
}
参考
- https://en.wikipedia.org/wiki/Bloom_filter
- https://cs.stackexchange.com/questions/132088/how-is-the-optimal-number-of-hashes-is-derived-in-bloom-filter
(完)
相关文章:

BloomFilter原理学习
文章目录BloomFilter简单介绍BloomFilter中的数学知识fpp(误判率/假阳性)的计算k的最小值公式总结编程语言实现golang的实现[已知n, p求m和k](https://github.com/bits-and-blooms/bloom/blob/master/bloom.go#L133)参考BloomFilter简单介绍 BloomFilter我们可能经常听到也在使…...
C语言老题新解第1-5题
文章目录1 互不相同且无重复数字2 企业利润提成3 两个完全平方数4 判断一年的第几天5 三个整数比较大小1 互不相同且无重复数字 1 有1, 2, 3, 4四个数字,能组成多少互不相同且无重复数字的三位数?都是多少? 最简单当然是三重循环嵌套在一起…...

【数据库系列】MQSQL历史数据分区
互联网行业企业都倾向于mysql数据库,虽说mysql单表能支持亿级别的数据量,加上索引优化下查询速度,勉强能使用,但是对于追求性能和效率的互联网企业,这是远远不够的。Mysql数据库单表数据量到达500万左右,达…...
MyBatis常用的俩种分页方式
1、使用 limit 实现分页 select * from xxx limit m,n # m 表示从第几条数据开始,默认从0开始 # n 表示查询几条数据 select * from xxx limit 2,3 # 从索引为2的数据开始,往后查询三个。2、3、4 (1) 创建分页对象,用来封装分页的数据 PS…...

RPC通信原理解析
一、什么是RPC框架? RPC,全称为Remote Procedure Call,即远程过程调用,是一种计算机通信协议。 比如现在有两台机器:A机器和B机器,并且分别部署了应用A和应用B。假设此时位于A机器上的A应用想要调用位于B机…...
【蓝桥杯集训·周赛】AcWing 第93场周赛
文章目录第一题 AcWing 4867. 整除数一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第二题 AcWing 4868. 数字替换一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第三题 AcWing 4869. 异或值一、题目1、原题…...

蓝桥杯-刷题统计
蓝桥杯-刷题统计1、问题描述2、解题思路3、代码实现3.1 方案一:累加方法(超时)3.2 方案二1、问题描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 a 道题目, 周六和周日每天做 b 道题目。请你帮小明计算, 按照计划他将在 第几天实现做题数…...
Linux入门教程||Linux Shell 变量|| Shell 传递参数
Shell 变量 定义变量时,变量名不加美元符号($,PHP语言中变量需要),如: your_name"w3cschool.cn"注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一…...

[算法和数据结构]--回溯算法之DFS初识
回溯算法——DFSDFS介绍(Depth First Search)DFS经典题目1. 员工的重要性2. 图像渲染3.被围绕的区域4.岛屿数量5. 电话号码的字母组合6.数字组合7. 活字印刷8. N皇后DFS介绍(Depth First Search) 回溯法(back tracking)(探索与回溯法&#x…...

【LeetCode每日一题】——680.验证回文串 II
文章目录一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【解题思路】七【题目提示】八【时间频度】九【代码实现】十【提交结果】一【题目类别】 贪心算法 二【题目难度】 简单 三【题目编号】 680.验证回文串 II 四【题目描述】 给你一个字…...

【C语言进阶:指针的进阶】你真分得清sizeof和strlen?
本章重点内容: 字符指针指针数组数组指针数组传参和指针传参函数指针函数指针数组指向函数指针数组的指针回调函数指针和数组面试题的解析这篇博客 FLASH 将带大家一起来练习一些容易让人凌乱的题目,通过这些题目来进一步加深和巩固对数组,指…...

【前端必看】极大提高开发效率的网页 JS 调试技巧
大家好,我是前端西瓜哥。本文讲解如何使用浏览器提供的工具进行 JS 代码的断点调试。 debugger 在代码中需要打断点的地方,加上 debugger,表示一个断点。浏览器代码执行到该位置时,会停下来,进入调试模式。 示例代码…...

【春招面经】视源股份前端一面
前言 本次主要记录一下视源股份CVTE前端一面 (3.3下午4点15) 文章目录前言本次主要记录一下视源股份CVTE前端一面 (3.3下午4点15)问题总结介绍一下项目的来源以及做这个项目的初衷一直监听滚动,有没有对性能产生影响&a…...

插件化开发入门
一、背景顾名思义,插件化开发就是将某个功能代码封装为一个插件模块,通过插件中心的配置来下载、激活、禁用、或者卸载,主程序无需再次重启即可获取新的功能,从而实现快速集成。当然,实现这样的效果,必须遵…...

tftp、nfs 服务器环境搭建
目录 一、认识 tftp、nfs 1、什么是 tftp? 2、什么是 nfs? 3、tftp 和 nfs 的区别 二、tftp的安装 1、安装 tftp 服务端 2、配置 tftp 3、启动 tftp 服务 三、nfs 的安装 1、安装 nfs 服务端 2、配置 nfs 3、启动 nfs 服务 一、认识 tftp、…...

汇编系列03-不借助操作系统输出Hello World
每天进步一点点,加油! 上一节,我们通过汇编指令,借助操作系统的系统调用实现了向标准输出打印Hello world。这一节我们打算绕过操作系统,直接在显示屏幕上打印Hello world。 计算机的启动过程 当我们给计算机加电启…...

TPU编程竞赛系列|算能赛道冠军SO-FAST团队获第十届CCF BDCI总决赛特等奖!
近日,第十届中国计算机学会(CCF)大数据与计算智能大赛总决赛暨颁奖典礼在苏州顺利落幕,算能赛道的冠军队伍SO-FAST从2万余支队伍中脱颖而出,获得了所有赛道综合评比特等奖! 本届CCF大赛吸引了来自全国的2万…...

【C++】AVL树,平衡二叉树详细解析
文章目录前言1.AVL树的概念2.AVL树节点的定义3.AVL树的插入4.AVL树的旋转左单旋右单旋左右双旋右左双旋AVL树的验证AVL树的删除AVL树的性能前言 前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是࿱…...

C/C++开发,无可避免的多线程(篇四).线程与函数的奇妙碰撞
一、函数、函数指针及函数对象 1.1 函数 函数(function)是把一个语句序列(函数体, function body)关联到一个名字和零或更多个函数形参(function parameter)的列表的 C 实体,可以通过返回或者抛…...
elisp简单实例: taglist
从vim 转到emacs 下,一直为缺少vim 中的tablist 插件而感到失落. 从网上得到的一个emacs中的taglist, 它的功能很简陋,而且没有任何说明, 把它做为elisp的简单实例,供初学者入门倒不错,我给它加了很多注释,帮助理解, 说实话,感觉这百行代码还是挺有深度的,慢慢体会,调试才会有收…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...
Shell 解释器 bash 和 dash 区别
bash 和 dash 都是 Unix/Linux 系统中的 Shell 解释器,但它们在功能、语法和性能上有显著区别。以下是它们的详细对比: 1. 基本区别 特性bash (Bourne-Again SHell)dash (Debian Almquist SHell)来源G…...
宠物车载安全座椅市场报告:解读行业趋势与投资前景
一、什么是宠物车载安全座椅? 宠物车载安全座椅是一种专为宠物设计的车内固定装置,旨在保障宠物在乘车过程中的安全性与舒适性。它通常由高强度材料制成,具备良好的缓冲性能,并可通过安全带或ISOFIX接口固定于车内。 近年来&…...