当前位置: 首页 > news >正文

SpringBoot/Java中OCR实现,集成Tess4J实现图片文字识别

场景

Tesseract

Tesseract是一个开源的光学字符识别(OCR)引擎,它可以将图像中的文字转换为计算机可读的文本。

支持多种语言和书面语言,并且可以在命令行中执行。它是一个流行的开源OCR工具,可以在许多不同的操作系统上运行。

GitHub - tesseract-ocr/tesseract: Tesseract Open Source OCR Engine (main repository)

Tess4J

Tess4J是一个基于Tesseract OCR引擎的Java接口,可以用来识别图像中的文本,说白了,就是封装了它的API,让Java可以直接调用。

中文文字训练集下载

Tesseract引擎默认是无法识别中文的,只能识别数字或者英文。如果我们想实现中文的识别就得去下载对应的训练集。

GitCode - 开发者的代码家园

下载之后找到中文简体训练集文件

将chi_sim.traineddata复制到某磁盘路径下,这里放在D盘tessdata目录下

注:

博客:
霸道流氓气质-CSDN博客

实现

1、搭建SpringBoot项目后,添加Tess4J依赖

        <dependency><groupId>net.sourceforge.tess4j</groupId><artifactId>tess4j</artifactId><version>4.5.4</version></dependency>

2、在配置文件application.yml中添加训练集文件夹的路径

# 训练数据文件夹的路径
tess4j:datapath: D:/tessdata

3、新增配置类,读取配置文件内容,并初始化Tesseract类,交给Spring管理

import net.sourceforge.tess4j.Tesseract;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class TesseractOcrConfiguration {@Value("${tess4j.datapath}")private String dataPath;@Beanpublic Tesseract tesseract() {Tesseract tesseract = new Tesseract();// 设置训练数据文件夹路径tesseract.setDatapath(dataPath);// 设置为中文简体tesseract.setLanguage("chi_sim");return tesseract;}
}

4、编写Service接口层

import java.io.InputStream;public interface IOcrService {String recognizeText(InputStream sbs);
}

5、编写ServiceImpl

import com.ruoyi.system.service.IOcrService;
import net.sourceforge.tess4j.Tesseract;
import net.sourceforge.tess4j.TesseractException;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.InputStream;@Service
public class OcrServiceImpl implements IOcrService {@Autowiredprivate Tesseract tesseract;@Overridepublic String recognizeText(InputStream sbs) {// 转换try {BufferedImage bufferedImage = ImageIO.read(sbs);// 对图片进行文字识别return tesseract.doOCR(bufferedImage);} catch (IOException | TesseractException e) {e.printStackTrace();return null;}}
}

6、编写单元测试

import com.ruoyi.system.service.IOcrService;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;@RunWith(SpringRunner.class)
@SpringBootTest(classes = RuoYiApplication.class,webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class Tess4JOcrTest {@Autowiredprivate IOcrService iOcrService;@Testpublic void ocrLocalPng() {try {InputStream inputStream=new FileInputStream("D://tess4j.png");String result = iOcrService.recognizeText(inputStream);System.out.println(result);} catch (FileNotFoundException e) {e.printStackTrace();}}
}

7、这里的png文件随便截图并放在磁盘路径下,运行单元测试

识别效果可能存在不准确的情况。

其它使用场景,比如前端上传照片,后台识别返回结果等可自己进行扩展。

相关文章:

SpringBoot/Java中OCR实现,集成Tess4J实现图片文字识别

场景 Tesseract Tesseract是一个开源的光学字符识别&#xff08;OCR&#xff09;引擎&#xff0c;它可以将图像中的文字转换为计算机可读的文本。 支持多种语言和书面语言&#xff0c;并且可以在命令行中执行。它是一个流行的开源OCR工具&#xff0c;可以在许多不同的操作系…...

【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因&#xff1a; 特征学习的能力&#xff1a;深度学习&#xff0c;特别是卷积神经网络&#xff08;CNN&#xff09;&#xff0c;能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动…...

骑砍战团MOD开发(48)-多人联机模式开发环境搭建

一.多人联机模式网络拓扑图 <1.局域网网络拓扑图 <2.互联网网络拓扑图 二.多人联机模式配置 MOD目录下module.ini修改配置项 has_multiplayer 1 has_single_player 1 三.服务端创建 引擎内置presentation页面: prsnt_game_multiplayer_admin_panel start_multi…...

Java+SpringBoot+Vue+MySQL:美食推荐系统的技术革新

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…...

【服务发现--ingress】

1、ingress介绍 Ingress 提供从集群外部到集群内服务的 HTTP 和 HTTPS 路由。 流量路由由 Ingress 资源所定义的规则来控制。 Ingress 是对集群中服务的外部访问进行管理的 API 对象&#xff0c;典型的访问方式是 HTTP。 Ingress 可以提供负载均衡、SSL 终结和基于名称的虚拟…...

Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细

前言 2023 年&#xff0c;Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。 本次介绍的是YOLOv8-AM&#xff0c;它将注意力机制融入到原始的YOLOv8架构中。具体来说&#xff0c;我们分别采用四个注意力模块&#xff1a;卷积块注意力模块…...

苹果分拣检测YOLOV8NANO

苹果分拣&#xff0c;可以检测成熟、切片、损坏、不成熟四种类型&#xff0c;YOLOV8NANO&#xff0c;训练得到PT模型&#xff0c;然后转换成ONNX&#xff0c;OPENCV的DNN调用&#xff0c;支持C,PYTHON 苹果分拣检测YOLOV8NANO&#xff0c;检测四种类型苹果...

使用 Verilog 做一个可编程数字延迟定时器 LS7211-7212

今天的项目是在 Verilog HDL 中实现可编程数字延迟定时器。完整呈现了延迟定时器的 Verilog 代码。 所实现的数字延迟定时器是 CMOS IC LS7212&#xff0c;用于生成可编程延迟。延迟定时器的规格可以在这里轻松找到。基本上&#xff0c;延迟定时器有 4 种操作模式&#xff1a;…...

戏说c语言文章汇总

c语言的起源GNU C和标准C第一篇: hello c!第二篇: 为什么需要编译第三篇: 当你运行./a.out时&#xff0c;发生了什么&#xff1f;第四篇: 简单的加法器第五篇: 两个正数相加竟然变成了负数&#xff01;第六篇: 西西弗斯推石头(循环)第七篇: 九九乘法表(双循环)第八篇: 如果上天…...

面试redis篇-12Redis集群方案-分片集群

原理 主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决&#xff1a; 海量数据存储问题高并发写的问题 使用分片集群可以解决上述问题&#xff0c;分片集群特征&#xff1a; 集群中有多个master&#xff0c;每个master保存不同数据每个master都可以有…...

【Java EE初阶二十三】servlet的简单理解

1. 初识servlet Servlet 是一个比较古老的编写网站的方式&#xff0c;早起Java 编写网站,主要使用 Servlet 的方式&#xff0c;后来 Java 中产生了一个Spring(一套框架)&#xff0c;Spring 又是针对 Servlet 进行了进一步封装,从而让我们编写网站变的更简单了&#xff1b;Sprin…...

c++ http操作接口

很简单的使用libcurl来操作http与服务器来通讯&#xff0c;包含http与https&#xff0c;对外只开放 #include "request.h" #include "response.h" #include "url.h" 三个头文件&#xff0c;简单易用&#xff0c;使用的实例如下&#xff1a; vo…...

oracle官网下载早期jdk版本

Java Downloads | Oracle JDK Builds from Oracle 以上压缩版&#xff0c;以下安装版 Java Downloads | Oracle 该链接往下拉能看到jdk8和jdk11的安装版 -- end...

Python爬虫实战:图片爬取与保存

引言&#xff1a; 在本文中&#xff0c;我们将学习如何使用Python创建一个简单的图片爬虫。 我们将利用requests库来发送HTTP请求&#xff0c;BeautifulSoup库来解析HTML页面&#xff0c;以及os和shutil库来下载和保存图片。通过这个教程&#xff0c;你将学会如何爬取网…...

CMS垃圾回收器

CMS垃圾回收 CMS GC的官方名称为“Mostly Concurrenct Mark and Sweep Garbage Collector”&#xff08;最大-并发-标记-清除-垃圾收集器&#xff09;。 作用范围&#xff1a; 老年代 算法&#xff1a; 并发标记清除算法。 启用参数&#xff1a;-XX:UseConMarkSweepGC 默认回收…...

【力扣白嫖日记】184.部门工资最高的员工

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 184.部门工资最高的员工 表&#xff1a;Employee 列名类型idintnamevarcharsalaryvarchardepartmentIdint …...

JAVA讲解算法-排序算法-选择排序算法-02

一、定义 选择排序法是一种不稳定的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;然后&#xff0c;再从剩余未排序元素中继续寻找最小&#xff08;大&#xff09;元素&a…...

【初始RabbitMQ】高级发布确认的实现

在生产环境中由于一些不明原因&#xff0c;导致 rabbitmq 重启&#xff0c;在 RabbitMQ 重启期间生产者消息投递失败&#xff0c; 导致消息丢失&#xff0c;需要手动处理和恢复。于是&#xff0c;我们开始思考&#xff0c;如何才能进行 RabbitMQ 的消息可靠投递呢&#xff1f; …...

用39块钱的全志V851se视觉开发板做了个小相机,还可以物品识别、自动追焦!

用39块钱的V851se视觉开发板做了个小相机。 可以进行物品识别、自动追焦&#xff01; 这个超低成本的小相机是在V851se上移植使用全志在线开源版本的Tina Linux与OpenCV框架开启摄像头拍照捕获视频&#xff0c;并结合NPU实现Mobilenet v2目标分类识别以及运动追踪等功能…并最终…...

主从复制实现Redis集群

主从复制实现Redis集群实验 (一主二从): 实验环境: 使用Docker 搭建 Redis 版本 5.0.5 打开一个终端窗口&#xff0c;在其中运行如下命令创建一个名为redis-master的Redis容器。注意&#xff0c;它的端口是6379 (本地的端口:映射到容器的端口) docker run -itd--name redis-m…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...