推导部分和——带权并查集
题解:
带权并查集
引言: 带权并查集是一种进阶的并查集,通常,结点i的权值等于结点i到根节点的距离,对于带权并查集,有两种操作需要掌握——Merge与Find,涉及到路径压缩与维护权值等技巧。
带权并查集的数据结构
-
使用顺序存储结构,定义结构体数组,其中a[i]的root代表节点 i 的根节点编号,weight代表它与root号节点之间的距离,也就是权值。
struct node {int root;ll weight;node() :root(0), weight(0) {} }a[100005];
Find函数+权值合并
-
首先,在执行整个并查集算法之前,需要首先初始化每一个结点的根节点编号为它本身,意思就是说,每一个结点在初始状态时都被视为一颗单独的并查集树,即:
for (int i = 1; i <= n; i++) {a[i].root = i; }
-
当我们想要去查询一个节点的根节点时,调用find函数:
-
传入:想要查询的结点编号x
-
返回: 第x号结点的根节点编号
//路径压缩+权值合并 int find(int x) {if (x != a[x].root) {//更新x的根节点int tmp = a[x].root;a[x].root = find(a[x].root);a[x].weight += a[tmp].weight;}return a[x].root; }
-
在函数体内:
- 当结点x的root值为它自己时,即 x == a[x].root 时,直接返回a[x].root
- 否则,递归查找它根节点的根节点
- 在递归之前,使用tmp暂存x当前的根节点编号。这是由于在查找的过程中,我们使用了路径压缩的技巧,使a[x].root被赋值为find函数的返回值,但是在后续的计算中,我们又需要使用到这个旧的a[x].root值。
- 在路径压缩的同时,我们必须要维护权值a[x].weight使其始终等于x号结点到a[x].root号结点的距离。
- 在路径压缩之前,a[x].weight存储的是x到旧的root的距离,但root发生更改后,此时新的权值a[x].weight应该修改为dist(新root,旧root) + dist(旧root,x)才能符合权值的定义,dis(新root, 旧root)将会被递归计算出来,而dis(旧root, x)正是a[x].weight现在存储的值,因此,我们必须要记下旧root的编号才能找到旧root的位置,这也就是tmp发挥的作用。
-
合并
- 当我们得到了两个结点之间的距离,并且想要将这两个结点合并,按照并查集的思想,应当先找到他们各自的根节点,然后再将两颗树合并。然而,我们现在所获取的信息并不是根节点的信息,因此我们需要对已知的信息做一个转化:
-
假设我们现在得到的新的信息是第l-1个节点到第r个节点的距离为w,设第l-1个节点的根节点编号为x,第r个节点的根节点编号为y。
-
首先,我们通过find(l−1)find(l - 1)find(l−1)和find(r)find(r)find(r)获得x与y的值,经过find函数内部的权值维护之后,此时,a[l-1].weight和a[r].weight已经分别被修改为l-1到x和r到y的距离了,设它们分别为w1和w2.
-
通过上图,其实我们很容易就能看出x到y的距离为:w+w2−w1w+w_2-w1w+w2−w1
-
在这,我们只需要算出x到y的距离就好了,在后续调用find函数执行路径压缩和权值合并时将会处理掉它,因此,我们合并的操作就是:
int l, r, w; l = read(), r = read(), w = read(); //x为l-1的根节点,y为r的根节点 int x = find(l - 1), y = find(r); //若l-1与r的根节点不相同 if (x != y) {//将结点x并入y的子树a[x].root = y;//根据向量的思想计算a[x].weight = w + a[r].weight - a[l - 1].weight; }
-
查询
写到这里,这个题目已经接近尾声。(此处再次强调a[i].weight的意义是从第i个节点到第a[i].root个节点的距离,接下来要用的) 当我们维护好了一颗带权并查集树之后,那我们查询区间和就只有两种情况:
- 设区间左端点为l,右端点为r,则
- 当l与r的根不相同时,则无法查询出l到r的区间和。
- 当l与r的根相同时,则有s[l..r]=a[l−1].weight−a[r].weights[l.. r]=a[l-1].weight-a[r].weights[l..r]=a[l−1].weight−a[r].weight
- 以图形的方式表达,蓝色部分即为所求的区间和:
完整代码:
#include <iostream>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
ll n, m, q;//带权并查集结点
struct node {int root;ll weight;node() :root(0), weight(0) {}
}a[100005];
//快读
int read() {char ch = getchar(); int res = 0;while (ch < '0' || ch>'9') {ch = getchar();}while (!(ch < '0' || ch>'9')) {res = res * 10 + (ch - '0');ch = getchar();}return res;
}
//快写
void print(ll x) {if (x > 9) {print(x / 10);}putchar(x % 10 + '0');
}//路径压缩+权值合并
int find(int x) {if (x != a[x].root) {//更新x的根节点int tmp = a[x].root;a[x].root = find(a[x].root);a[x].weight += a[tmp].weight;}return a[x].root;
}int main()
{cin >> n >> m >> q;for (int i = 1; i <= n; i++) {a[i].root = i;}for (int i = 1; i <= m; i++) {int l, r, w;l = read(), r = read(), w = read();//x为l-1的根节点,y为r的根节点int x = find(l - 1), y = find(r);//若l-1与r的根节点不相同if (x != y) {//将结点x并入y的子树a[x].root = y;//根据向量的思想计算a[x].weight = w + a[r].weight - a[l - 1].weight;}}for (int i = 1; i <= q; i++) {int l, r; cin >> l >> r;if (find(l - 1) != find(r)) {puts("UNKNOWN");}else {print(a[l - 1].weight - a[r].weight);putchar('\n');}}return 0;
}
相关文章:

推导部分和——带权并查集
题解: 带权并查集 引言: 带权并查集是一种进阶的并查集,通常,结点i的权值等于结点i到根节点的距离,对于带权并查集,有两种操作需要掌握——Merge与Find,涉及到路径压缩与维护权值等技巧。 带…...

费解的开关/翻硬币
🌱博客主页:大寄一场. 🌱系列专栏: 算法 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 题目:费解的开关 你玩过“拉灯”游戏吗? 25盏灯排成一个 55 的方形。 每一个灯都有一个开关&…...

OpenGL中的坐标系
1、2D笛卡尔坐标系2D笛卡尔坐标系跟我们高中的时候学习的坐标系一样,是由x、y决定的。2、3D笛卡尔坐标系3D笛卡尔坐标系坐标由x、y、z决定,满足右手定则。3、视口glViewport(GLint x,GLint y,GLsizei width,GLsizei height)窗口和视口大小可以相同&#…...

Spring——Spring介绍和IOC相关概念
Spring是以Spring Framework为核心,其余的例如Spring MVC, Spring Cloud,Spring Data,Spring Security SpringBoot的基础都是Spring Framework。 Spring Boot可以在简化开发的基础上加速开发。 Spring Cloud分布式开发 Spring有…...
A+B Problem
AB Problem 题目描述 输入两个整数 a,ba, ba,b,输出它们的和(∣a∣,∣b∣≤109|a|,|b| \le {10}^9∣a∣,∣b∣≤109)。 注意 Pascal 使用 integer 会爆掉哦!有负数哦!C/C 的 main 函数必须是 int 类型,…...

【ROS学习笔记11】ROS元功能包与launch文件的使用
【ROS学习笔记11】ROS元功能包与launch文件的使用 文章目录【ROS学习笔记11】ROS元功能包与launch文件的使用前言一、ROS元功能包二、ROS节点运行管理launch文件2.1 launch文件标签之launch2.2 launch文件标签之node2.3 launch文件标签之include2.4 launch文件标签之remap2.5 l…...
【python】
print函数 同时输出多行变量 print(a, b, sep\n) (23条消息) python3 中print函数参数详解,print(*values, sep , end\n, filesys.stdout, flushFalse)中参数介绍_sep,_phantom-dapeng的博客-CSDN博客 input() 输入浮点数,不能用int(input()) int()…...

充电协议: 快充协议,如何选充电宝?
快充协议(存在两种:电压; 电流) 目前市面上的快充技术大多遵循2个技术方向: 以高通QC、联发科PEP、华为FCP为首的高压低电流快充技术; 另一种就是以OPPO的VOOC以及华为SCP为首的低电压大电流快充技术。 目前常见的快充标准还有三星AFC、联发…...

视觉SLAM十四讲ch6 非线性优化笔记
视觉SLAM十四讲ch6 非线性优化笔记本讲目标上讲回顾状态估计问题非线性最小二乘Gauss-Newton:高斯牛顿Levenburg-Marquadt:列文伯格-马夸尔特小结实践:CERES实践:G2O本讲目标 理解最小二乘法的含义和处理方式。 理解Gauss-Newton…...
Nikto工具使用指南
NiktoNikto是一款开源网站服务器扫描器,使用Perl开发,可以对服务器进行全面扫描,包括6400多个潜在危险的文件/cgi(通用网关接口(Common Gateway Interface)),废话不多说,直接上命令:基本测试&am…...

Git(4)之基本工具
Git基础之基本工具 Author:onceday date:2023年3月5日 满满长路有人对你微笑过嘛… windows安装可参考文章:git简易配置_onceday_CSDN博客 參考文档: 《progit2.pdf》,Progit2 Github。《git-book.pdf》 文章目录…...
好书推荐。
个人喜欢看传记,散文,历史等 二战名人传记,苏联列宁,朱可夫,斯大林等 英国首相丘吉尔,美国富兰克林,中国毛泽东等 创业:比尔盖,扎克伯格,苹果公司创始人乔…...

[Pytorch]DataSet和DataLoader逐句详解
将自己的数据集引入Pytorch是搭建属于自己的神经网络的重要一步,这里我设计了一个简单的实验,结合这个实验代码,我将逐句教会大家如何将数据引入DataLoader。 这里以目标检测为例,一个batch中包含图片文件、先验框的框体坐标、目标…...

【Kettle-佛系总结】
Kettle-佛系总结Kettle-佛系总结1.kettle介绍2.kettle安装3.kettle目录介绍4.kettle核心概念1.转换2.步骤3.跳(Hop)4.元数据5.数据类型6.并行7.作业5.kettle转换1.输入控件1.csv文件输入2.文本文件输入3.Excel输入4.XML输入5.JSON输入6.表输入2.输出控件…...
JavaSE网络编程
JavaSE网络编程一、基本概念二、常用类三、使用方法1、创建服务器端Socket2、创建客户端Socket3、创建URL对象JavaSE中的网络编程模块提供了一套完整的网络编程接口,可以方便地实现各种基于网络的应用程序。本文将介绍JavaSE中网络编程模块的基本知识、常用类以及使…...

9万字“联、管、用”三位一体雪亮工程整体建设方案
本资料来源公开网络,仅供个人学习,请勿商用。部分资料内容: 1、 总体设计方案 围绕《公共安全视频监控建设联网应用”十三五”规划方案》中的总体架构和一总两分结构要求的基础上,项目将以“加强社会公共安全管理,提高…...
springboot自动装配原理
引言 springboot的自动装配是其重要特性之一,在使用中我们只需在maven中引入需要的starter,然后相应的Bean便会自动注册到容器中。例如: <dependency><groupId>org.springframework.boot</groupId><artifactId>spr…...

Docker学习(二十)什么是分层存储?
目录1.简介2.什么是 Union Mount?3.分层介绍1)lowerdir 层(镜像层)2)upperdir 层(容器层)3)merged 层4.工作原理1)读:2)写:3ÿ…...

Vue组件进阶(动态组件,组件缓存,组件插槽,具名插槽,作用域插槽)与自定义指令
Vue组件进阶与自定义指令一、Vue组件进阶1.1 动态组件1.2 组件缓存1.3 组件激活和非激活1.4 组件插槽1.5 具名插槽1.6 作用域插槽1.7 作用域插槽使用场景二、自定义指令2.1 自定义指令--注册2.2 自定义指令-传参一、Vue组件进阶 1.1 动态组件 多个组件使用同一个挂载点&#x…...
僵尸进程与孤儿进程
概念 在 Unix/Linux 系统中,正常情况下,子进程是通过父进程创建的,且两者的运行是相互独立的,父进程永远无法预测子进程到底什么时候结束。当一个进程调用 exit 命令结束自己的生命时,其实它并没有真正的被销毁&#…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...