Ubuntu18.04 系统上配置并运行SuperGluePretrainedNetwork(仅使用CPU)
SuperGlue是Magic Leap在CVPR 2020上展示的研究项目,它是一个图神经网络(Graph Neural Network)和最优匹配层(Optimal Matching layer)的结合,训练用于对两组稀疏图像特征进行匹配。这个项目提供了PyTorch代码和预训练的权重,可以在SuperPoint关键点和描述子的基础上运行SuperGlue匹配网络。给定一对图像,你可以使用这个项目来提取图像对之间的匹配特征。
SuperGlue作为一个“中端”操作,执行上下文聚合、匹配和过滤等功能,是一个端到端的架构。
要在Ubuntu系统上配置并运行SuperGluePretrainedNetwork而不使用CUDA(即不使用GPU),你可以按照以下步骤进行。这些步骤基于SuperGlue的官方GitHub仓库的指导,但已修改为适应仅使用CPU的情况。
1. 克隆仓库
首先,打开一个终端,并使用以下命令克隆SuperGlue的GitHub仓库:
git clone https://github.com/magicleap/SuperGluePretrainedNetwork.git
cd SuperGluePretrainedNetwork
2. 创建Python虚拟环境
创建一个新的Python虚拟环境以避免依赖项与系统的其他项目冲突。这一步需要你已经安装了Python3和pip。
sudo apt-get install python3-venv
python3 -m venv superglue-env
source superglue-env/bin/activate
3. 安装依赖
在虚拟环境中安装所有必要的Python依赖。由于不使用CUDA,可以忽略与CUDA相关的依赖。
pip install -r requirements.txt
有可能提醒你安装wheel
pip install wheel
4. 强制使用CPU
要确保代码在没有CUDA的情况下运行,在执行脚本时添加--force_cpu
标志。例如,如果要运行demo_superglue.py
脚本:
demo_superglue.py
脚本接受的参数有:
--input
: 输入图像或图像文件夹的路径。--output_dir
: 输出目录的路径。--image_glob
: 用于匹配输入目录中图像文件的glob模式。--skip
: 在处理连续帧时跳过的帧数。--max_length
: 处理的最大帧数。--resize
: 调整图像大小的参数,接受一个或两个值(宽度和高度)。--superglue
: 使用的SuperGlue模型的类型(outdoor
或indoor
)。--max_keypoints
: 每个图像提取的最大关键点数。--keypoint_threshold
: 关键点检测的置信度阈值。--nms_radius
: 非最大抑制(NMS)的半径。--sinkhorn_iterations
: Sinkhorn算法的迭代次数。--match_threshold
: 匹配阈值。--show_keypoints
: 是否显示关键点。--no_display
: 不显示图像结果。--force_cpu
: 使用CPU而不是GPU。
python demo_superglue.py --input assets/scannet_sample_images/ --output_dir output/ --resize -1 -1 --force_cpu
这里,我假设--resize -1 -1
意味着你不想调整图像大小。你需要根据实际的demo_superglue.py
脚本接受的参数来调整这个命令。如果你需要针对特定图像对运行匹配过程,你可能需要查看脚本内部的实现,看是否支持直接指定图像对,或者你可能需要手动调整脚本来适应你的需求。
5. 使用KITTI 00进行测试的结果
相关文章:

Ubuntu18.04 系统上配置并运行SuperGluePretrainedNetwork(仅使用CPU)
SuperGlue是Magic Leap在CVPR 2020上展示的研究项目,它是一个图神经网络(Graph Neural Network)和最优匹配层(Optimal Matching layer)的结合,训练用于对两组稀疏图像特征进行匹配。这个项目提供了PyTorch代…...

协议-http协议-基础概念01-发展历程-http组成-http是什么-相关的应用-相关的协议
发展历程-http组成-http是什么-相关的应用-相关的协议 参考来源: 极客时间-透视HTTP协议(作者:罗剑锋); 01-HTTP的发展历程 1989 年,任职于欧洲核子研究中心(CERN)的蒂姆伯纳斯 - 李(Tim Ber…...
UI学习-学习内容
教程网址1:UI 新手如何从设计规范中提升自己 推荐一下高质量的设计规范 满屏干货 语雀 B站地址1:新像素 UI 新手如何从设计规范中提升自己 推荐一下高质量的设计规范 满屏干货 UI设计培训_哔哩哔哩_bilibili 教程地址2:UI 新手成长经验分享…...

Flink CDC 提取记录变更时间作为事件时间和 Hudi 表的 precombine.field 以及1970-01-01 取值问题
博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,…...
【网络安全】网络安全意识教育实用指南
随着科技的不断发展和数字世界的变革,我们不仅从中获得前所未有的力量,也同时面临着前所未有的风险挑战。多数CISO(首席信息安全官)时刻致力于协助企业抵御各种安全威胁。在“武器库”中有一件珍贵的法宝:网络安全意识…...
wordpress模板购买网站推荐
简站wordpress主题 老牌wordpress开发团队,开发过数百款wordpress主题,作品是最好的简历,靠作品说话,看作品喜欢不喜欢就可以了。 https://www.jianzhanpress.com WP模板牛 免费wordpress下载网站,上面有上百款免费…...

LeetCode 刷题 [C++] 第240题.搜索二维矩阵 II
题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 题目分析 通过分析矩阵的特点发现,其左下角和右上角可以看作一个“二叉搜索树的根节…...

HP笔记本电脑如何恢复出厂设置?这里提供几种方法
要恢复出厂设置Windows 11或10的HP笔记本电脑,你可以使用操作系统的标准方法。如果你运行的是早期版本,你可以使用HP提供的单独程序清除计算机并重新安装操作系统。 恢复出厂设置运行Windows 11的HP笔记本电脑 所有Windows 11计算机都有一个名为“重置此电脑”的功能,可…...

Elasticsearch:了解人工智能搜索算法
作者:来自 Elastic Jessica Taylor, Aditya Tripathi 人工智能工具无处不在,其原因并不神秘。 他们可以执行各种各样的任务并找到许多日常问题的解决方案。 但这些应用程序的好坏取决于它们的人工智能搜索算法。 简单来说,人工智能搜索算法是…...

(HAL)STM32F103C6T8——软件模拟I2C驱动0.96寸OLED屏幕
一、电路接法 电路接法参照江科大视频。 二、相关代码及文件 说明:代码采用hal库,通过修改江科大代码实现。仅OLED.c文件关于引脚定义作了hal库修改,并将宏定义OLED_W_SCL(x)、OLED_W_SDA(x)作了相关修改。 1、OLED.c void OLED_I2C_Init(voi…...
分享便携式血氧仪单片机方案
血氧仪主要测量指标分别为脉率、血氧饱和度、灌注指数。血氧饱和度是临床医疗上重要的基础数据之一。以家用指压式血氧仪为例,一个血氧仪一般由MCU、存储芯片、两个控制LED的数模转换器、两个发光二极管驱动等组成。 灵动微电子的MM32MCU产品已被广泛地应用在了一些…...

【Java设计模式】四、适配器模式
文章目录 1、适配器模式2、举例 1、适配器模式 适配器模式Adapter Pattern,是做为两个不兼容的接口之间的桥梁目的是将一个类的接口转换成客户希望的另外一个接口适配器模式可以使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 最后,适配器…...

RV32/64 特权架构 - 特权模式与指令
RV32/64 特权架构 - 特权模式与指令 1 特权模式2 特权指令2.1 mret(从机器模式返回到先前的模式)2.2 sret(从监管模式返回到先前的模式)2.3 wfi(等待中断)2.4 sfence.vma(内存屏障) …...
多微服务合并为一个服务
公司微服务细分太多,最近跟我提说需要将几个微服务合为单体,经过几天的查阅,决定用二次打包的方式进行合并,然后部署的时候在nginx改下合并的微服务转发路劲即可,不需要前端修改路劲了。 方案 采用二次打包的方式进行…...
Springboot企业级开发--开发入门01
目录 目录 一.Spring Boot的主要特点和优势包括: 二.Spring Boot的核心功能可以归纳为以下几点: 三.Springboot是如何解决问题? Spring Boot 是一个开源的Java框架,其设计目标是为了简化新Spring应用的初始搭建以及开发过程。…...
bash和sh和./的区别
bash和sh和./的区别 今天在执行一个脚本的时候,用的是sh script.sh,执行报错,使用bash script.sh执行时就能成功,才知道sh和bash是不一样的 sh sh表示 Bourne Shell,是 Unix 系统上的一种基本的命令解释器。它也可以…...
LeetCode 3:寻找最长不含重复字符的子串长度
LeetCode 3:寻找最长不含重复字符的子串长度 在字符串处理中,寻找最长不含重复字符的子串长度是一个经典问题。 问题描述 给定一个字符串 s ,我们需要找出其中不含有重复字符的最长子串的长度。 解决方案 我们可以使用滑动窗口的方法来解…...

【自然语言处理四-从矩阵操作角度看 自注意self attention】
自然语言处理四-从矩阵操作角度看 自注意self attention 从矩阵角度看self attention获取Q K V矩阵注意力分数softmax注意力的输出再来分析整体的attention的矩阵操作过程从矩阵操作角度看,self attention如何解决问题的?W^q^ W^k^ W^v^这三个矩阵怎么获…...
Unity脚本,串行端口的握手协议(流控制)
在Unity的SerialPort构造函数中,流控制并没有被直接包含。流控制,也被称为握手,是一种过程,它管理数据的传输速度,以防止接收方被发送方发送的数据量所淹没。 在.NET的SerialPort类中,流控制是通过Handshak…...

2023 re:Invent 用 Amazon Q 打造你的知识库
前言 随着 ChatGPT 的问世,我们迎来了许多创新和变革的机会。一年一度的亚马逊云科技大会 re:Invent 也带来了许多前言的技术,其中 Amazon CEO Adam Selipsky 在 2023 re:Invent 大会中介绍 Amazon Q 让我印象深刻,这预示着生成式 AI 的又一…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...