RV32/64 特权架构 - 特权模式与指令
RV32/64 特权架构 - 特权模式与指令
- 1 特权模式
- 2 特权指令
- 2.1 mret(从机器模式返回到先前的模式)
- 2.2 sret(从监管模式返回到先前的模式)
- 2.3 wfi(等待中断)
- 2.4 sfence.vma(内存屏障)
- 3 特权模式的切换
本文属于《 RISC-V指令集基础系列教程》之一,欢迎查看其它文章。
1 特权模式
RISC-V 架构定义了三种主要的工作模式,也被称为特权模式。
这些模式的主要区别在于,它们的权限级别和所能够执行的操作。
- 用户模式(User Mode)
权限等级最低。
在这个模式下运行的程序(如应用程序)不能直接访问硬件资源或执行特权操作。
用户模式提供了最基本的程序执行环境,用于隔离和保护操作系统内核和其他程序。
它确保了应用程序的稳定性和安全性,防止它们对系统造成损害。
- 监管模式(Supervisor Mode,也称为超级用户模式)
权限等级介于用户模式和机器模式之间。
通常用于操作系统内核的运行。
在监管模式下,程序可以执行一些特权操作,如访问物理内存、管理设备驱动程序等。
它允许操作系统管理硬件资源,为多个用户模式的程序提供服务和调度。
- 机器模式(Machine Mode)
权限等级最高。
在这个模式下,程序可以执行所有操作,包括直接访问和修改所有硬件资源。
机器模式通常用于硬件初始化、系统引导、中断和异常处理等关键任务。
由于其高度特权,机器模式通常只允许特定的、受信任的代码运行。
这些模式的优先级顺序为:机器模式 > 监管模式 > 用户模式
机器模式,是最高级特权,也是 RISC-V 硬件平台唯一必须实现的特权级。
处理器通常在最低特权模式下运行,当发生中断和异常时,则将控制权转移到更高特权的模式。
这些模式的存在意义在于提供了一种灵活而安全的计算环境。通过限制不同程序的权限,RISC-V 架构能够防止恶意软件或不受信任的程序对系统造成损害。同时,它也允许操作系统有效地管理硬件资源,确保多个程序能够公平地共享这些资源。
RISC-V 架构的模块化设计使得这些模式可以根据需要进行组合和配置,从而满足不同系统的需求。例如,一些嵌入式系统可能只需要用户模式和机器模式,而不需要监管模式。
2 特权指令
RISC-V 特权架构的指令示意图,如下所示:
RISC-V具备的特权指令,如下所示:
特权架构添加的指令非常少,但增加了若干控制状态寄存器(CSR)来实现其新增功能。
2.1 mret(从机器模式返回到先前的模式)
指令形式:mret
在RISC-V架构中,mret(Machine Return)指令用于从异常或中断处理程序返回到先前的执行环境(通常是从机器模式返回到之前的模式,如监管模式或用户模式)。这个指令负责恢复处理器的状态,并确保返回到正确的执行地址。
具体来说,当处理器遇到中断或异常时,它会切换到机器模式(M模式)以处理该中断或异常。在处理完成后,mret指令被用来退出机器模式,并返回到之前的状态和模式。
mret指令的执行过程涉及以下几个步骤:
- 恢复状态:mret指令会从特定的CSR寄存器(如mstatus、mepc等)中恢复处理器的状态。这些寄存器在中断或异常发生时保存了处理器的状态信息。
- 切换模式:根据mstatus寄存器中的MPP字段的值,mret指令将决定返回到哪个模式(机器模式、监管模式或用户模式)。
- 跳转到程序计数器:mret指令将mepc寄存器中的值(即中断或异常处理完成后应该返回的程序地址)复制到程序计数器(PC),从而确保处理器从正确的地址开始执行。
需要注意的是,mret指令只能在机器模式下执行,并且只有在软件修改了mstatus寄存器的MPP字段以指定要返回到的模式之后,才能安全地使用该指令进行返回操作。
总的来说,mret指令在RISC-V架构中扮演着从机器模式返回到其他模式的关键角色,确保了处理器在中断或异常处理完成后能够正确地恢复到先前的执行环境。
2.2 sret(从监管模式返回到先前的模式)
指令形式:sret
在RISC-V架构中,sret(Supervisor Return)指令用于从异常或中断处理程序返回到监督模式(Supervisor Mode)。它是RISC-V处理器的一组退出指令之一,专门用于在监督模式下退出异常。
当处理器在执行用户模式的程序时遇到需要由监督模式处理的异常或中断时,它会切换到监督模式来执行相应的异常或中断处理程序。在异常或中断处理程序执行完成后,sret指令被用来从监督模式返回到用户模式,并继续执行原来的程序。
sret指令的执行过程与mret类似,也会恢复处理器的状态并跳转到正确的程序计数器(PC)。它会从特定的CSR寄存器(如sstatus、sepc等)中恢复监督模式的状态信息,并将sepc寄存器中的值复制到程序计数器(PC),从而确保处理器从正确的地址开始执行用户模式的程序。
需要注意的是,sret指令只能在监督模式下执行,并且只有在软件修改了相应CSR寄存器的字段以指定要返回到的模式之后,才能安全地使用该指令进行返回操作。
总之,sret指令在RISC-V架构中用于从监督模式返回到用户模式,确保处理器在异常或中断处理完成后能够正确地恢复到用户模式的执行环境。
2.3 wfi(等待中断)
指令形式:wfi
RISC-V架构中的WFI(Wait For Interrupt)指令是一条特殊的休眠指令。当处理器执行到WFI指令后,它会停止执行当前的指令流,进入一种空闲状态,通常被称为“休眠”状态。处理器会在这个状态下等待,直到接收到一个使能的中断请求,这时处理器会被唤醒并继续执行。
具体来说,WFI指令的作用是将处理器置于低功耗的等待状态,直到下一个中断或触发事件发生。在这个过程中,CPU的功耗会被降到最低水平。这是一种常用于节能和功耗优化的待机指令。
此外,WFI指令也可以被当作一种NOP(无操作)指令来使用,即它不会真正进入休眠模式,但仍然会停止当前的指令执行,直到下一个中断或触发事件发生。
需要注意的是,WFI指令的执行需要满足一些条件,例如中断局部开关必须被打开(由mie寄存器控制),并且全局中断也需要被使能(由mstatus寄存器的MIE域控制)。如果中断被全局关闭,处理器在唤醒后会继续顺序执行之前停止的指令流。
总的来说,WFI指令在RISC-V架构中提供了一种有效的机制来降低处理器的功耗,并在需要时通过中断来唤醒处理器,从而实现了节能和高效的处理器管理。
2.4 sfence.vma(内存屏障)
指令形式:sfence.vma rs1, rs2
在RISC-V架构中,sfence.vma指令是一个同步屏障(Synchronization Fence)指令,用于确保内存操作的顺序性。这条指令在RISC-V的特权模式(Supervisor Mode)中提供内存访问的同步机制。
sfence.vma指令的具体语法是sfence.vma rs1, rs2,其中rs1和rs2是两个寄存器操作数。然而,需要注意的是,尽管sfence.vma指令接受两个寄存器操作数,但这两个操作数并不直接参与指令的功能。实际上,这两个寄存器通常被设置为零,因为sfence.vma指令的行为不依赖于这两个寄存器的具体值。
sfence.vma指令的主要作用是创建一个内存屏障,确保在指令之前的所有内存写操作(Store)在指令执行后对所有后续的内存读操作(Load)都是可见的。换句话说,它确保了在sfence.vma指令之前的所有写操作在指令执行后都已经被刷新到内存中,并且后续的读操作能够读取到这些更新的值。
这种内存屏障机制在并发编程和多处理器系统中非常重要,因为它可以防止内存访问的竞态条件(Race Condition)。例如,当多个处理器或线程同时访问和修改共享内存时,如果没有适当的同步机制,就可能出现一个处理器读取到的内存值是另一个处理器尚未写入的旧值的情况,从而导致程序行为的不正确。通过使用sfence.vma指令,可以确保内存访问的顺序性,从而避免这类问题。
需要注意的是,sfence.vma指令只在Supervisor Mode下有效,并且在其他模式下执行该指令将导致未定义行为。此外,该指令的具体行为可能还取决于处理器的具体实现和配置。因此,在使用sfence.vma指令时,建议查阅相关的处理器文档或参考手册以获取准确的信息。
3 特权模式的切换
在 RISC-V 架构中,三种特权模式(用户模式、监管模式、机器模式)之间的切换是通过特定的指令和系统寄存器的配合来实现的。
(1) 指令控制:
- 使用特定的特权切换指令,如 mret(从机器模式返回到先前的模式)、sret(从监管模式返回到先前的模式)和 uret(从用户模式返回到先前的模式)。这些指令用于在完成特权操作后安全地返回到较低权限的模式。
(2) 系统寄存器:
- RISC-V 架构使用了一组称为 Control and Status Registers (CSRs) 的特殊寄存器来管理特权级别的切换。其中,mstatus 寄存器是机器状态寄存器,包含了关于机器模式状态的信息。
- mstatus.mpp 字段用于指示当前特权级别。当需要切换特权级别时,软件会修改 mstatus.mpp 字段的值,并通过执行相应的返回指令来实际执行切换。
(3) 中断和异常处理:
- 当发生中断或异常时,处理器会根据中断或异常的类型自动切换到相应的特权级别。例如,处理器接收到一个中断时,可能会切换到机器模式来处理该中断。
- 中断和异常处理完成后,处理器会根据 mstatus.mpp 寄存器的值返回到先前的特权级别。
(4) 硬件支持:
- RISC-V 架构的硬件设计支持这些模式的切换。处理器在执行特权切换指令时,会检查当前的特权级别和目标特权级别,并执行必要的状态保存和恢复操作。
需要注意的是,具体的切换机制和步骤可能会因具体的 RISC-V 实现和系统配置而有所不同。上述描述提供了一般的概述,但具体的实现细节可能会因处理器微架构、操作系统和硬件平台而异。
相关文章:

RV32/64 特权架构 - 特权模式与指令
RV32/64 特权架构 - 特权模式与指令 1 特权模式2 特权指令2.1 mret(从机器模式返回到先前的模式)2.2 sret(从监管模式返回到先前的模式)2.3 wfi(等待中断)2.4 sfence.vma(内存屏障) …...
多微服务合并为一个服务
公司微服务细分太多,最近跟我提说需要将几个微服务合为单体,经过几天的查阅,决定用二次打包的方式进行合并,然后部署的时候在nginx改下合并的微服务转发路劲即可,不需要前端修改路劲了。 方案 采用二次打包的方式进行…...
Springboot企业级开发--开发入门01
目录 目录 一.Spring Boot的主要特点和优势包括: 二.Spring Boot的核心功能可以归纳为以下几点: 三.Springboot是如何解决问题? Spring Boot 是一个开源的Java框架,其设计目标是为了简化新Spring应用的初始搭建以及开发过程。…...
bash和sh和./的区别
bash和sh和./的区别 今天在执行一个脚本的时候,用的是sh script.sh,执行报错,使用bash script.sh执行时就能成功,才知道sh和bash是不一样的 sh sh表示 Bourne Shell,是 Unix 系统上的一种基本的命令解释器。它也可以…...
LeetCode 3:寻找最长不含重复字符的子串长度
LeetCode 3:寻找最长不含重复字符的子串长度 在字符串处理中,寻找最长不含重复字符的子串长度是一个经典问题。 问题描述 给定一个字符串 s ,我们需要找出其中不含有重复字符的最长子串的长度。 解决方案 我们可以使用滑动窗口的方法来解…...

【自然语言处理四-从矩阵操作角度看 自注意self attention】
自然语言处理四-从矩阵操作角度看 自注意self attention 从矩阵角度看self attention获取Q K V矩阵注意力分数softmax注意力的输出再来分析整体的attention的矩阵操作过程从矩阵操作角度看,self attention如何解决问题的?W^q^ W^k^ W^v^这三个矩阵怎么获…...
Unity脚本,串行端口的握手协议(流控制)
在Unity的SerialPort构造函数中,流控制并没有被直接包含。流控制,也被称为握手,是一种过程,它管理数据的传输速度,以防止接收方被发送方发送的数据量所淹没。 在.NET的SerialPort类中,流控制是通过Handshak…...

2023 re:Invent 用 Amazon Q 打造你的知识库
前言 随着 ChatGPT 的问世,我们迎来了许多创新和变革的机会。一年一度的亚马逊云科技大会 re:Invent 也带来了许多前言的技术,其中 Amazon CEO Adam Selipsky 在 2023 re:Invent 大会中介绍 Amazon Q 让我印象深刻,这预示着生成式 AI 的又一…...

ChatGPT 国内快速上手指南
ChatGPT简介 ChatGPT是由OpenAI团队研发的自然语言处理模型,该模型在大量的互联网文本数据上进行了预训练,使其具备了深刻的语言理解和生成能力。 GPT拥有上亿个参数,这使得ChatGPT在处理各种语言任务时表现卓越。它的训练使得模型能够理解上…...

Docker 常用操作命令备忘
Docker 一旦设置好了环境,日常就只要使用简单命令就可以运行和停止。 于是,我每次用的时候,都想不起来一些关键性的命令到底怎么用,特此记录。 一、镜像管理 从公有仓库拉取镜像 (对于使用苹果电脑 M1/M2/M3 芯片的 …...

BUU [CISCN2019 华东南赛区]Web4
BUU [CISCN2019 华东南赛区]Web4 题目描述:Click to launch instance. 开题: 点击链接,有点像SSRF 使用local_file://协议读到本地文件,无法使用file://协议读取,有过滤。 local_file://协议: local_file…...

【卷积神经网络中用1*1 卷积有什么作用或者好处呢?】
🚀 作者 :“码上有前” 🚀 文章简介 :深度学习 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 1*1 卷积有什么作用或者好处呢 作用降维和增加非线性特征组合和交互网络的宽度和深度调整全连接替代增强…...
分布式系统概念及其应用
分布式系统概念及其应用 随着互联网的飞速发展,数据量和计算需求不断增加,传统的集中式系统已经无法满足这些需求。因此,分布式系统应运而生,它通过将计算任务分散到多台计算机上,实现高效的计算和存储。本文将介绍分…...
数据报文转换
报文转换 🍓JSON🍒🍒JSON多字段映射成一个实体对象🍒🍒JSON反序列化为一个带有泛型的JAVA类型 🍓xml 🍓JSON 🍒🍒JSON多字段映射成一个实体对象 <dependency><…...

Python爬虫-付费代理推荐和使用
付费代理的使用 相对免费代理来说,付费代理的稳定性更高。本节将介绍爬虫付费代理的相关使用过程。 1. 付费代理分类 付费代理分为两类: 一类提供接口获取海量代理,按天或者按量收费,如讯代理。 一类搭建了代理隧道࿰…...

kubectl使用及源码阅读
目录 概述实践样例yaml 中的必须字段 kubectl 代码原理kubectl 命令行设置pprof 抓取火焰图kubectl 中的 cobra 七大分组命令kubectl createcreateCmd中的builder模式createCmd中的visitor访问者模式外层VisitorFunc分析 结束 概述 k8s 版本 v1.24.16 kubectl的职责 1.主要的…...

C++面试宝典第32题:零钱兑换
题目 给定不同面额的硬币coins和一个总金额amount,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,则返回-1。说明:你可以认为每种硬币的数量是无限的。 示例1: 输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = …...

pyspark分布式部署随机森林算法
前言 分布式算法的文章我早就想写了,但是一直比较忙,没有写,最近一个项目又用到了,就记录一下运用Spark部署机器学习分类算法-随机森林的记录过程,写了一个demo。 基于pyspark的随机森林算法预测客户 本次实验采用的…...

【Python笔记-设计模式】中介者模式
一、说明 中介者模式是一种行为设计模式,减少对象之间混乱无序的依赖关系。该模式会限制对象之间的直接交互,迫使它们通过一个中介者对象进行合作。 (一) 解决问题 降低系统中对象之间的直接通信,将复杂的交互转化为通过中介者进行的间接交…...
大语言模型构建的主要四个阶段(各阶段使用的算法、数据、难点以及实践经验)
大语言模型构建通常包含以下四个主要阶段:预训练、有监督微调、奖励建模和强化学习,简要介绍各阶段使用的算法、数据、难点以及实践经验。 预训练 需要利用包含数千亿甚至数万亿 单词的训练数据,并借助由数千块高性能 GPU 和高速网络组成的…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

Appium下载安装配置保姆教程(图文详解)
目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...