当前位置: 首页 > news >正文

【pytorch】tensor.detach()和tensor.data的区别

文章目录

        • 序言
        • 相同点
        • 不同点
        • 测试实例
        • 应用

序言
  • .detach()和.data都可以用来分离tensor数据,下面进行比较
  • pytorch0.4及之后的版本,.data仍保留,但建议使用.detach()
相同点
  • x.detach()和x.data返回和x相同数据的tensor,这个新的tensor和原来的tensor共用数据,一者改变,另一者也会跟着改变
  • 新分离得到的tensor的requires_grad = False, 即不可求导的
不同点
  • (1) .data是一个属性,.detach()是一个方法
  • (2) x.data不能被autograd追踪求微分,即使被改了也能错误求导;x.detach()也不能被autograd追踪求微分,被改了会直接报错,避免错误的产生
  • (3) .data是不安全的,.detach()是安全的
测试实例
  • .data测试

    import torcha = torch.tensor([1 ,2 ,3.], requires_grad = True)  # float类型,支持求导
    out = a.sigmoid()
    print(out)    # 输出(0.0, 1.0)结果
    b = out.data  # 分离tensor
    b.zero_()     # 改变b的值,原来的out也会改变
    print(b.requires_grad)  # .data后requires_grad=False
    print(b)                # 归0后的值 tensor([0., 0., 0.])
    print(out.requires_grad)    # out的requires_grad=True
    print(out)                  # b的值改变了out也变了 tensor([0., 0., 0.])
    print("----------------------------------------------")out.sum().backward()  # 对原来的out求导
    print(a.grad)         # 不会报错,但结果不正确
    
    • 更改分离之后的变量值b,导致原来的张量out的值也跟着改变
    • 但是这种改变对于autograd是没有察觉的,它依然按照求导规则来求导,导致得出完全错误的导数值却浑然不知
    • 它的风险性就是如果我再任意一个地方更改了某一个张量,求导的时候也没有通知我已经在某处更改了,导致得出的导数值完全不正确
  • .detach()测试

    import torcha = torch.tensor([4, 5, 6.], requires_grad=True)
    out = a.sigmoid()
    print(out)
    c = out.detach()
    c.zero_()               # 改变c的值,原来的out也会改变
    print(c.requires_grad)  # detach后requires_grad=False
    print(c)                # 已经归0
    print(out.requires_grad)    # 输出为True
    print(out)
    print("----------------------------------------------")out.sum().backward()  # 对原来的out求导,
    print(a.grad)         # 此时会报错: 梯度计算所需要的张量已经被“原位操作inplace”所更改了# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    
    • 更改分离之后的变量值c,导致原来的张量out的值也跟着改变
    • 这个时候如果依然按照求导规则来求导,由于out已经更改了,所以不会再继续求导了,而是报错,这样就避免了得出错误的求导结果
应用
  • forward时使用.data或.detach(),不进行梯度计算和梯度跟踪
  • backward时梯度回传,不能使用.detach()或.data,比如loss信息被detach的话就无法进行梯度回传更新参数,会导致模型无法收敛

 


【参考文章】
[1]. .detach和.data的区别和作用
[2]. .detach和.data的区别
[3]. .detach和.data求导时的区别

created by shuaixio, 2024.02.24

相关文章:

【pytorch】tensor.detach()和tensor.data的区别

文章目录 序言相同点不同点测试实例应用 序言 .detach()和.data都可以用来分离tensor数据,下面进行比较pytorch0.4及之后的版本,.data仍保留,但建议使用.detach() 相同点 x.detach()和x.data返回和x相同数据的tensor,这个新的t…...

教师资格证相关

文章目录: 一:考试时间 二:考试科目 三:相关网站 四:相关 一:考试时间 教资 笔试 面试笔试报名笔试考试笔试公布面试报名面试时间面试公布上半年1月14日3月12日4月15日4月…...

卷积神经网络介绍

卷积神经网络(Convolutional Neural Networks,CNN) 网络的组件:卷积层,池化层,激活层和全连接层。 CNN主要由以下层构造而成: 卷积层:Convolutional layer(CONV)池化层&#xff1a…...

XSS简介

XSS被称为跨站脚本攻击(Cross-site scripting),由于和CSS(CascadingStyle Sheets)重名,所以改为XSS。 XSS主要速于javascript语言完成恶意的攻击行为,因为javascript可非常灵活的操作html、css和浏览器 XSS就是指通过利用网页开发时留下的漏…...

手写redux和applyMiddleware中间件react示例

目录 一 核心代码 1.reducer 2.store.js 二 关于context API的使用 1. MyContext 2. createContext 3. ContextProvider 4. connect 三 组件验证效果 1. Todo 2. TodoList 3.TodoItem 4.TodoInput 5. App组件引入Todo组件 一 核心代码 1.reducer // 新增列表数…...

MATLAB R2024a 主要更新内容

系列文章目录 前言 一、主要更新 计算机视觉工具箱 —— 为二维和三维视觉任务设计算法、标注数据并生成代码。深度学习工具箱 —— 支持变换器等架构;导入并共同模拟 PyTorch 和 TensorFlow 模型。仪器控制工具箱 —— 使用仪器资源管理器应用程序管理带有 IVI 和…...

4.1.CVAT——目标检测的标注详细步骤

文章目录 1. 进入任务1. 创建任务2. 已创建的task3. 进入标注界面 2. 选择标注类型2.1 选择标注类型2.2 进行标注2.3 遮挡 2.快捷键3.导出标注结果 1. 进入任务 登录后会看到如下图界面,CVAT的标注最小单位是Task,每个Task为一个标注任务。点击Task按钮…...

图论-算法题

797. 所有可能的路径 题目: 给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序) graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i …...

onnx 1.16 doc学习笔记七:python API一览

onnx作为一个通用格式,很少有中文教程,因此开一篇文章对onnx 1.16文档进行翻译与进一步解释, onnx 1.16官方文档:https://onnx.ai/onnx/intro/index.html](https://onnx.ai/onnx/intro/index.html), 如果觉得有收获&am…...

LACP——链路聚合控制协议

LACP——链路聚合控制协议 什么是LACP? LACP(Link Aggregation Control Protocol,链路聚合控制协议)是一种基于IEEE802.3ad标准的实现链路动态聚合与解聚合的协议,它是链路聚合中常用的一种协议。 链路聚合组中启用了…...

终端启动jupyter notebook更换端口

一、问题描述 如果尝试在端口 8889 上启动 Jupyter Notebook 但最终启动在了 8890 端口,这通常意味着 8889 端口已经被占用。要解决这个问题,可以尝试以下几种方法来关闭占用 8889 端口的进程。 1. 查找并终止占用端口的进程 首先,需要找出…...

IT发布管理,轻松部署软件

我们带来了一项令人振奋的好消息,可有效缓解构建的质量相对劣质和发布的速度相对缓慢。 ManageEngine卓豪推出了ServiceDesk Plus MSP中的IT发布管理,配备了可视化的工作流程,这是PSA-ITSM解决方案的一部分。有了这个新功能,您可以…...

2024国际生物发酵展览会独家解读-力诺天晟科技

参展企业介绍 北京力诺天晟科技有限公司,专业致力于智能仪器仪表制造,工业自动控制系统用传感器、变送器的研发、设计、销售和服务。 公司坐落于首都北京行政副中心-通州区,下设生产子公司位于河北香河经济开发区,厂房面积 300…...

YOLOv9尝鲜测试五分钟极简配置

pip安装python包: pip install yolov9pip在https://github.com/WongKinYiu/yolov9/tree/main中下载好权重文件yolov9-c.pt。 运行下面代码: import yolov9model yolov9.load("yolov9-c.pt", device"cpu") # load pretrained or c…...

消息中间件篇之Kafka-消息不丢失

一、 正常工作流程 生产者发送消息到kafka集群,然后由集群发送到消费者。 但是可能中途会出现消息的丢失。下面是解决方案。 二、 生产者发送消息到Brocker丢失 1. 设置异步发送 //同步发送RecordMetadata recordMetadata kafkaProducer.send(record).get();//异…...

Rust使用calamine读取excel文件,Rust使用rust_xlsxwriter写入excel文件

Rust使用calamine读取已存在的test.xlsx文件全部数据,还读取指定单元格数据;Rust使用rust_xlsxwriter创建新的output.xlsx文件,并写入数据到指定单元格,然后再保存工作簿。 Cargo.toml main.rs /*rust读取excel文件*/ use cala…...

中文文本分类(pytorch 实现)

import torch import torch.nn as nn import torchvision from torchvision import transforms, datasets import os, PIL, pathlib, warningswarnings.filterwarnings("ignore") # 忽略警告信息# win10系统 device torch.device("cuda" if torch.cuda.i…...

【每日前端面经】2023-02-27

题目来源: 牛客 CSS盒模型 CSS中的盒子包括margin|border|padding|content四个部分,对于标准盒子模型(content-box)的widthcontent,但是对于IE盒子模型(border-box)的widthcontentborder2padding2 CSS选…...

springboot + easyRules 搭建规则引擎服务

依赖 <dependency><groupId>org.jeasy</groupId><artifactId>easy-rules-core</artifactId><version>4.0.0</version></dependency><dependency><groupId>org.jeasy</groupId><artifactId>easy-rules…...

Mac电脑配置环境变量

1.打开配置文件bash_profile open -e .bash_profile 2.如果没有创建过.bash_profile&#xff0c;则先需要创建 touch .bash_profile 3.输入你要配置的环境变量 #Setting PATH for Android ADB Tools export ANDROID_HOME/Users/xxx/android export PATH${PATH}:${ANDROID_HOME}…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...