当前位置: 首页 > news >正文

深入理解分库、分表、分库分表

前言

分库分表,是企业里面比较常见的针对高并发、数据量大的场景下的一种技术优化方案,所谓"分库分表",根本就不是一件事儿,而是三件事儿,他们要解决的问题也都不一样,这三个事儿分别是"只分库不分表"、"只分表不分库”、以及"既分库又分表"。本文我们一起理解分库、分表的奥秘。

分库主要解决的是并发量大的问题。因为并发量一旦上来了,那么数据库就可能会成为瓶颈,因为数据库的连接数是有限的,虽然可以调整,但是也不是无限调整的。所以,当你的数据库的读或者写的QPS过高,导致你的数据库连接数不足了的时候,就需要考虑分库了,通过增加数据库实例的方式来提供更多的可用数据库链接,从而提升系统的并发度。

分表主要解决的是数据量大的问题。假如你的单表数据量非常大,因为并发不高,数据量连接可能还够,但是存储和查询的性能遇到了瓶颈了,你做了很多优化之后还是无法提升效率的时候,就需要考虑做分表了。

那么,当你的数据库链接也不够了,并且单表数据量也很大导致査询比较慢的时候,就需要做既分库又分表了

分库、分表、分库分表

分库主要解决的是并发量大的问题。比较典型的分库的场景就是我们在做微服务拆分的时候,就会按照业务边界把各个业务的数据从一个单一的数据库中拆分开,分别把订单、物流、商品、会员等数据,分别放到单独的数据库中。

还有就是有的时候可能会需要把历史订单挪到历史库里面去。这也是分库的一种具体做法

什么时候分表?

分表主要解决的是数据量大的问题。通过将数据拆分到多张表中,来减少单表的数据量,从而提升查询速度

一般我们认为,单表行数超过 500 万行或者单表容量超过 2GB之后,才需要考虑做分库分表了,小于这个数据量,遇到性能问题先建议大家通过其他优化来解决,

PS:以上数据,是阿里巴巴Java开发手册中给出的数据,偏保守,根据实际经验来说,单表抗2000万数据量问题不大,但具体的数据里还是要看记录大小、存储引擎设置、硬件配置等。

那如果,既需要解决并发量大的问题,又需要解决数据量大的问题时候。通常情况下,高并发和数据量大的问题都是同时发生的,所以,我们会经常遇到分库分表需要同时进行的情况。

所以,当你的数据库链接也不够了,并且单表数据量也很大导致査询比较慢的时候,就需要做既分库又分表了

横向拆分和纵向拆分

谈及到分库分表,那就要涉及到该如何做拆分的问题。
通常在做拆分的时候有两种分法,分别是横向拆分(水平拆分)和纵向拆分(垂直拆分)。假如我们有一张表,如果把这张表中某一条记录的多个字段,拆分到多张表中,这种就是纵向拆分。那如果把一张表中的不同的记录分别放到不同的表中,这种就是横向拆分。

横向拆分的结果是数据库表中的数据会分散到多张分表中,使得每一个单表中的数据的条数都有所下降。比如我们可以把不同的用户的订单分表拆分放到不同的表中。

纵向拆分的结果是数据库表中的数据的字段数会变少,使得每一个单表中的数据的存储有所下降。比如我可以把商品详情信息、价格信息、库存信息等等分别拆分到不同的表中,

分表字段如何选择?

在分库分表的过程中,我们需要有一个字段用来进行分表,比如按照用户分表、按照时间分表、按照地区分表。这里面的用户、时间、地区就是所谓的分表字段。

那么,在选择这个分表字段的时候,一定要注意,要根据实际的业务情况来做慎重的选择。
比如说我们要对交易订单进行分表的时候,我们可以选择的信息有很多,比如买家|d、卖家|d、订单号、时间、地区等等,具体应该如何选择呢?

通常,如果有特殊的诉求,比如按照月度汇总、地区汇总等以外,我们通常建议大家按照买家ld进行分表。因为这样可以避免一个关键的问题那就是--数据倾斜(热点数据)

1、买家还是卖家

首先,我们先说为什么不按照卖家分表?

因为我们知道,电商网站上面是有很多买家和卖家的,但是,一个大的卖家可能会产生很多订单,比如像苏宁易购、当当等这种店铺,他每天在天猫产生的订单量就非常的大。如果按照卖家!d分表的话,那同一个卖家的很多订单都会分到同一张表。

那就会使得有一些表的数据量非常的大,但是有些表的数据量又很小,这就是发生了数据倾斜。这个卖家的数据就变成了热点数据,随着时间的增长,就会使得这个卖家的所有操作都变得异常缓慢。

但是,买家ID做分表字段就不会出现这类问题,因为不太容易出现一个买家能把数据买倾斜了。
但是需要注意的是,我们说按照买家Id做分表,保证的是同一个买家的所有订单都在同一张表,并不是要给每个买家都单独分配一张表。

我们在做分表路由的时候,是可以设定一定的规则的,比如我们想要分1024张表,那么我们可以用买家ID或者买家ID的hashcode对1024取模,结果是0000-1023,那么就存储到对应的编号的分表中就行了。

2、卖家查询怎么办

如果按照买家Id进行了分表,那卖家的查询怎么办,这不就意味着要跨表查询了吗?
首先,业务问题我们要建立在业务背景下讨论。电商网站订单查询有几种场景?

  1. 买家查自己的订单
  2. 卖家查自己的订单
  3. 平台的小二查用户的订单。

首先,我们用买家ID做了分表,那么买家来查询的时候,是一定可以把买家!D带过来的,我们直接去对应的表里面查询就行了。

那如果是卖家查呢?卖家查询的话,同样可以带卖家id过来,那么,我们可以有一个基于binlog、fink等准实时的同步一张卖家维度的分表,这张表只用来查询,来解决卖家查询的问题。

本质上就是用空间换时间的做法。

不知道大家看到这里会不会有这样的疑问:同步一张卖家表,这不又带来了大卖家的热点问题了吗?
首先,我们说同步一张卖家维度的表来,但是其实所有的写操作还是要写到买家表的,只不过需要准实时同步的方案同步到卖家表中。也就是说,我们的这个卖家表理论上是没有业务的写操作,只有读操作的。

所以,这个卖家库只需要有高性能的读就行了,那这样的话就可以有很多选择了,比如可以部署到一些配置不用那么高的机器、或者其实可以干脆就不用MYSQL,而是采用HBASE、PolarDB、Lindorm等数据库就可以了。这些数据库都是可以海量数据,并提供高性能查询的。

还有呢就是,大卖家一般都是可以识别的,提前针对大卖家,把他的订单,再按照一定的规则拆分到多张表中。因为只有读,没有写操作,所以拆分多张表也不用考虑事务的问题。

这里说的没有写指的是不会主动操作这张卖家表做更新,他的数据都是从买家表同步过来的,这个同步的事务在买家表已经处理过了,卖家表只需要负责同步。
卖家更新数据也一样,都是基于订单号更新的,订单号上面是带来分表信息的,直接到买家表去更新,然后同步到卖家表。

3、订单查询怎么办

上面说的都是有买卖家ID的情况,那没有买卖家ID呢?用订单号直接查怎么办呢?

这种问题的解决方案是,在生成订单号的时候,我们一般会把分表结果编码到订单号中去,因为订单生成的时候是一定可以知道买家ID的,那么我们就把买家ID的路由结果比如1023,作为一段固定的值放到订单号中就行了。这就是所谓的“基因法

这样按照订单号查询的时候,解析出这段数字,直接去对应分表查询就好了。
至于还有人问其他的查询,没有买卖家ID,也没订单号的,那其实就属于是低频查询或者非核心功能査询了,那就可以用ES等搜索引擎的方案来解决了。就不述了。

总结

本篇我们对分库分表有了初步的了解,接下来我们具体讨论分库分表的一些常用方法。

相关文章:

深入理解分库、分表、分库分表

前言 分库分表,是企业里面比较常见的针对高并发、数据量大的场景下的一种技术优化方案,所谓"分库分表",根本就不是一件事儿,而是三件事儿,他们要解决的问题也都不一样,这三个事儿分别是"只…...

Oracle中序列

1. Sequence 定义 在Oracle中可以用SEQUENCE生成自增字段。Sequence序列是Oracle中用于生成数字序列的对象,可以创建一个唯一的数字作为主键。 2. 为什么要用 Sequence 你可能有疑问为什么要使用序列? 不能使用一个存储主键的表并每次递增吗&#xf…...

蓝牙耳机和笔记本电脑配对连接上了,播放设备里没有显示蓝牙耳机这个设备,选不了输出设备

环境: WIN10 杂牌蓝牙耳机6s 问题描述: 蓝牙耳机和笔记本电脑配对连接上了,播放设备里没有显示蓝牙耳机这个设备,选不了输出设备 解决方案: 1.打开设备和打印机,找到这个设备 2.选中这个设备&#…...

Cadence Allegro PCB设计88问解析(三十四) 之 Allegro 中 DDR等长处理

一个学习信号完整性仿真的layout工程师 在进行PCB设计时 ,会遇到一些单端的信号要做等长处理,比如DDR的数据线,交换机之间的数据线之类的。这时需要我们建立match group,来做等长。下面简单介绍在Allegro中怎么做等长:…...

向爬虫而生---Redis 探究篇2<redis集群(1)>

前言: 经常会遇到这样的事,redis运行一段时间以后,就会出现迟钝和卡壳! 这时候,说明已经到了瓶颈期了,需要用到redis集群了! 那么,弄明白集群的几个概念是必要的,我用案例来讲,,, 正文: 当需要处理大量数据或提供高可用性和性能时,Redis集群是一种常见的解决方案。…...

[云原生] 二进制安装K8S(上)搭建单机matser、etcd集群和node节点

一、单机matser预部署设计 目前Kubernetes最新版本是v1.25,但大部分公司一般不会使用最新版本。 目前公司使用比较多的:老版本是v1.15,因为v1.16改变了很多API接口版本,国内目前使用比较多的是v1.18、v1.20。 组件部署&#xff…...

乘积尾零(蓝桥杯)

文章目录 乘积尾零题目描述代码 乘积尾零 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如下的 10 行数据,每行有 10 个整数,请你求出它们的乘积的末尾有多少个零? 5650 454…...

项目解决方案: 实时视频拼接方案介绍

目 录 1、实时视频拼接概述 2、适用场景 3、系统介绍 3.1拼接形式 3.1.1横向拼接 3.1.2纵向拼接 3.2前端选择 3.2.1前端类型 3.2.2推荐配置 3.3后端选择 3.3.1录像回放 3.3.2客户端展示 4、拼接方案介绍 4.1基于4K摄像机的拼接方案 4.1.1系统架构…...

雾锁王国Enshrouded服务器CPU内存配置怎么选择?

雾锁王国/Enshrouded服务器CPU内存配置如何选择?阿里云服务器网aliyunfuwuqi.com建议选择8核32G配置,支持4人玩家畅玩,自带10M公网带宽,1个月90元,3个月271元,幻兽帕鲁服务器申请页面 https://t.aliyun.com…...

yolov9,使用自定义的数据训练推理

[源码 🐋]( GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information) [论文 📘](arxiv.org/pdf/2402.13616.pdf) 论文摘要:本文介绍了一种新的目标检测…...

企业文件图纸加密有哪些?图纸文件加密防泄密软件如何选?

在现在的市场发展中,对于企业的图纸文件安全问题越来越重视,如设计图纸,重要文件等,一旦泄漏就会给企业造成巨大的经济损失。所以对企业管理者来讲,如何才能选择一款好用的适合本企业的图纸文件加密软件是非常重要的&a…...

phpldapadmin This base cannot be created with PLA

phpldapadmin This base cannot be created with PLA 1、问题描述2、问题分析3、解决方法:创建根节点 1、问题描述 安装phpldapadmin参考链接: https://blog.csdn.net/OceanWaves1993/article/details/136048686?spm1001.2014.3001.5501 刚安装完成phpldapadmin&…...

如何开发自己的npm包并上传到npm官网可以下载

目录 搭建文件结构 开始编写 发布到npm 如何下载我们发布的npm包 搭建文件结构 先创建新文件夹,按照下面的样子布局 .├── README.md //说明文档 ├── index.js //主入口 ├── lib //功能文件 └── tests //测试用例 然后再此根目录下初始化package包 npm init…...

Linux Shell脚本练习(一)

一、 Linux下执行Shell脚本的方式: 1、用shell程序执行脚本: a、根据你的shell脚本的类型,选择shell程序,常用的有sh,bash,tcsh等 b、程序的第一行#!/bin/bash里面指明了shell类型的,比如#!/…...

面试数据库篇(mysql)- 11主从同步

原理 MySQL主从复制的核心就是二进制日志 二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)语句。 复…...

Python中的os库

一.OS库简介 OS是Operating System的简写,即操作系统。 OS库是一个操作系统接口模块,提供一些方便使用操作系统相关功能的函数。 二.OS库常用函数 2.1文件和目录 2.1.1:os.getcwd() 作用:返回当前工作目录,结果是…...

C++ | 使用正则表达式匹配特定形式的字符串

C | 使用正则表达式匹配特定形式的字符串 在 C 中&#xff0c;可以使用 <regex> 头文件提供的正则表达式库来对特定形式的字符串进行匹配操作。 常用的正则表达式模式语法 普通字符&#xff1a; 普通字符会按照其字面意义进行匹配&#xff0c;例如 a 会匹配字符 a。 转…...

计算机组成原理-第一/二章 概述和数据的表示和运算【期末复习|考研复习】

文章目录 前言第一章 计算机组成原理 概述及各种码1.1 计算机硬件的基本组成1.1.1 存储器1.1.2 运算器1.1.3 控制器 1.2 计算机的工作过程1.3 计算机的性能指标1.4 各个字长区别与联系 第二章 数据的表示与运算2.1 ASCII码2.2 各种码2.3 浮点数 总结 前言 给大家整理了一下计算…...

基于transform的scale属性,动态缩放整个页面,实现数据可视化大屏自适应,保持比例不变形,满足不同分辨率的需求

文章目录 一、需求背景&#xff1a;二、需求分析&#xff1a;三、选择方案&#xff1a;四、实现代码&#xff1a;五、效果预览&#xff1a;六、封装组件&#xff1a; 一、需求背景&#xff1a; 数据可视化大屏是一种将数据、信息和可视化效果集中展示在一块或多块大屏幕上的技…...

Linux第67步_linux字符设备驱动_注册和注销

1、字符设备注册与注销的函数原型” /*字符设备注册的函数原型*/ static inline int register_chrdev(unsigned int major,\ const char *name, \ const struct file_operations *fops) /* major:主设备号&#xff0c;Limnux下每个设备都有一个设备号&#xff0c;设备号分…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...