当前位置: 首页 > news >正文

c#委托的三种实现方式

 委托是实质一个类,主要目的是将方法当作参数进行传递。

委托是.NET编程的精髓之一,在日常编程中经常用到,在C#中实现委托主要有Func、Action、delegate三种方式,本节主要就这三种委托的用法通过实例展开讲解。

Func用法解析

     【Func】:Func是带返回值的委托:

原型函数如下(以下展示的是有两个参数的情况):

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);

用法举例1: 定义方法StringAddA

public int StringAddA(string a, string b)        {            return int.Parse(a) + int.Parse(b);        }

定义委托func,然后把方法StringAddA委托给它,接下来执行委托并获取结果,注意:

Func<string, string, int> func = StringAddA;Func<string, string, int> func = new Func<string, string, int>(StringAddA);的简写
  Func<string, string, int> func = StringAddA;//简写            var result = func.Invoke("3", "5");//可以简化为func("3", "5")            sw.AppendLine($"【func用法1】func返回结果是:{result}");

这里的执行结果是: 【func用法1】func返回结果是:8

用法举例2: 

用lamda表达式简化写法,通过+=注册实现多播委托​​​​​​​

  func += (a, b) =>            {                return int.Parse(a) - int.Parse(b);            };            sw.AppendLine($"【func用法2】func返回结果是:{func("3", "5")}");

这里的执行结果是: 【func用法1】func返回结果是:-2

注意 += 可以注册多个委托,委托执行后会按顺序执行方法.

Action用法解析

     【Action】:Action是无返回值的委托:

原型函数如下(以下展示的是有两个参数的情况):

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);

用法举例:

先定义方法:StringAddB​​​​​​​

    public void StringAddB(string a, string b)        {            sw.AppendLine($"【Action用法】Action执行结果:{(int.Parse(a) + int.Parse(b))}");        }

实例如下:​​​​​​​

 Action<string, string> action = StringAddB;//简写            IAsyncResult asyncResult = action.BeginInvoke("3", "5", null, null);//action("3", "5"),BeginInvoke异步执行,即:开启新现成处理StringAddB            action.EndInvoke(asyncResult);//阻塞委托,直到执行完成            if (asyncResult.IsCompleted)            {                sw.AppendLine($"【Action用法】当前异步委托线程已执行完成");            }

这里BeginInvoke是异步委托,即新开线程去处理,我们的窗体线程在1号线程,这里我们可以在StringAddB里面打印线程id号

sw.AppendLine($"【Action用法】Action执行线程id:{Thread.CurrentThread.ManagedThreadId}");

运行结果:

【Action用法】Action执行线程id:3

这里的EndInvoke是阻塞委托,直到执行完成,当然我们这里也可以用同步的Invoke去执行,甚至Invoke都可以简写去掉,直接写成action("3", "5")

delegate用法解析

    【delegate】:delegate是可以有返回值也可以没返回值的委托:

使用前需要先声明:

 delegate int DelegateM(string a, string b);//声明,可以有返回值也可以没有

用法举例:​​​​​​​

   //delegate用法            //DelegateM delegateM = new DelegateM(p.StringAddA);            DelegateM delegateM = StringAddA;//简写            sw.AppendLine($"【delegate用法】delegate返回结果是:{delegateM("3", "5")}");

以上就是三种委托的区别和用法讲解,那使用委托最大的优势是什么:

可以将方法当作参数去传递,用法举例如下:

   Test(func, action);//将方法委托后转化为参数进行传递

定义方法​​​​​​​

     public void Test(Func<string, string, int> f, Action<string, string> a)        {            a.Invoke(f.Invoke("3", "5").ToString(), "5");        }

都看到这了,如果您感觉我推荐的内容对您有帮助,希望您能伸出援手,给我打赏一元请我喝瓶水;您的支持将是我在继续分享传作路上的无限动力。如果您囊肿羞涩也没有关系,希望您多写评论予以支持,山高水常,来日在见。

相关文章:

c#委托的三种实现方式

委托是实质一个类&#xff0c;主要目的是将方法当作参数进行传递。 委托是.NET编程的精髓之一&#xff0c;在日常编程中经常用到&#xff0c;在C#中实现委托主要有Func、Action、delegate三种方式&#xff0c;本节主要就这三种委托的用法通过实例展开讲解。 Func用法解析 【F…...

c/c++|红黑树|分析应用|锚点

红黑树是一种自平衡的二叉查找树&#xff0c;它保持着良好的平衡&#xff0c;能够在插入和删除等操作后通过一系列旋转和重新着色操作来保持树的平衡。这种平衡性质使得红黑树在搜索、插入和删除等操作的平均和最坏情况下的时间复杂度都是O(log n)。以下是红黑树的一些关键特性…...

2-29算法习题总结

贪心问题 小A的糖果 题目描述 小 A 有 n n n 个糖果盒&#xff0c;第 i i i 个盒中有 a i a_i ai​ 颗糖果。 小 A 每次可以从其中一盒糖果中吃掉一颗&#xff0c;他想知道&#xff0c;要让任意两个相邻的盒子中糖的个数之和都不大于 x x x&#xff0c;至少得吃掉几颗糖…...

当Linux 磁盘满了,查看大文件并删除

当你的Linux磁盘空间满了时&#xff0c;可以通过以下步骤查找大文件并删除它们&#xff1a; 检查磁盘空间&#xff1a; 使用以下命令检查磁盘空间的使用情况&#xff1a; df -h这将显示文件系统的使用情况&#xff0c;包括每个文件系统的总大小、已用空间、可用空间和挂载点。 …...

STL -萃取特性迭代器

1. STL简单概述 a. STL六大组成部分 容器&#xff08;Container&#xff09;空间配置器&#xff08;allocator&#xff09;算法&#xff08;Algorithm&#xff09;迭代器&#xff08;Iterator&#xff09;仿函数&#xff08;Function object&#xff09;适配器&#xff08;Ad…...

python pandas写入csv

在Python的Pandas库中&#xff0c;可以使用to_csv方法将DataFrame对象写入CSV文件。以下是一个简单的示例&#xff1a; import pandas as pd# 创建一个DataFrame对象 data {Name: [Alice, Bob, Charlie, David],Age: [25, 30, 35, 40],City: [New York, Los Angeles, Chicago…...

oracle 数据库建集群式数据库的DBLINK的语法

根据需要修改以下红色字体的部分即可。 1、连接集群式数据库DBLINK语法 create public database link 自定义的dblink名字 connect to 连接对方数据库的用户名 identified by "密码" using (DESCRIPTION (ADDRESS_LIST (FAILOVER ON) (LOAD_BALANCE OFF) …...

基于JAVA的毕业设计分配选题系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 专业档案模块2.2 学生选题模块2.3 教师放题模块2.4 选题审核模块 三、系统展示四、核心代码4.1 查询专业4.2 新增专业4.3 选择课题4.4 取消选择课题4.5 审核课题 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpri…...

Android 接入指纹识别

接入指纹框架&#xff1a;https://github.com/Tencent/soter implementation com.github.Tencent.soter:soter-wrapper:2.0.91.Application中初始化 class IApplication : Application() {override fun onCreate() {super.onCreate()instance thisinitSort()}private fun in…...

如何通过代理IP安全使用Linkedln领英?

LinkedIn是跨境外贸必备的拓客工具&#xff0c;世界各地的许多专业人士都使用领英来作为发布和共享内容的主要工具&#xff0c;这使得它成为跨境出海必备的渠道工具。 但是不少做外贸的朋友都知道&#xff0c;领英账号很容易遭遇限制封禁&#xff0c;但如果善用工具&#xff0…...

嵌入式驱动学习第一周——定时器与延时函数

前言 这篇博客一起学习定时器&#xff0c;定时器是最常用到的功能之一&#xff0c;其最大的作用之一就是提供了延时函数。 嵌入式驱动学习专栏将详细记录博主学习驱动的详细过程&#xff0c;未来预计四个月将高强度更新本专栏&#xff0c;喜欢的可以关注本博主并订阅本专栏&…...

Tips杂记

&#x1f972; &#x1f978; &#x1f90c; &#x1fac0; &#x1fac1; &#x1f977; &#x1f43b;‍❄️&#x1f9a4; &#x1fab6; &#x1f9ad; &#x1fab2; &#x1fab3; &#x1fab0; &#x1fab1; &#x1fab4; &#x1fad0; &#x1fad2; &#x1fad1…...

可以用numpy为for加速

Numpy除了用于科学计算&#xff0c;还有一个功能是可以代替某些for循环&#xff0c;进行同样的功能实现&#xff0c;有于是向量矩阵运算&#xff0c;碰到复杂的for时&#xff0c;计算速度可以提高&#xff0c;从而提高程序性能。以下是一些常用的NumPy函数和操作&#xff0c;可…...

cartographer ceres后端优化

这里引用一篇文章 https://zhuanlan.zhihu.com/p/567635409 因为cartographer中的代码有的地方添加了AddParameterBlock,有的地方没有添加,会引起歧义,原来AddParameterBlock可以隐式添加优化变量,这篇文章介绍了具体原因,核心内容如下: AddParameterBlock的作用作用一:…...

day57 集合 List Set Map

List实现类 List接口特点&#xff1a;元素有序 可重复 Arraylist 可变数组 jdk 8 以前Arraylist容量初始值10 jdk8 之后初始值为0&#xff0c;添加数据时&#xff0c;容量为10&#xff1b; ArrayList与Vector的区别&#xff1f; LinkList&#xff1a;双向链表 优点&#xff1…...

蓝桥杯:真题讲解3(C++版)附带解析

报纸页数 来自&#xff1a;2016年七届省赛大学C组真题&#xff08;共8道题) 分析&#xff1a; --画出报纸长的样子&#xff0c;如果我们在上面多画一张报纸&#xff0c;那么就符合题意的5&#xff0c;6&#xff0c;11&#xff0c;12。 观察这张图&#xff1a;观察3&#xf…...

继续预训练对大语言模型的影响

翻译自文章&#xff1a;Investigating Continual Pretraining in Large Language Models: Insights and Implications 摘要 本文研究了大型语言模型&#xff08;LLMs&#xff09;中不断学习&#xff08;CL&#xff09;的不断发展领域&#xff0c;重点是制定有效和可持续的训练…...

关于空频变换的知识点

1.DCT变换&#xff1a; 离散余弦变换是一种将图像从空域转换到频域的技术&#xff0c;它可以将图像分解为频域分量。对于RGB图像&#xff0c;它由红色&#xff08;R&#xff09;、绿色&#xff08;G&#xff09;和蓝色&#xff08;B&#xff09;三个通道组成。当应用DCT变换时…...

纯css实现-让字符串在文字少时显示为居中对齐,而在文字多时显示为左对齐

纯css实现-让字符串在文字少时显示为居中对齐&#xff0c;而在文字多时显示为左对齐 使用flex实现 思路 容器样式&#xff08;.container&#xff09;: Flex容器的BFC性质使得其内部的子元素&#xff08;.text-box&#xff09;在水平方向上能够居中&#xff0c;通过justify-c…...

初学HTMLCSS——盒子模型

盒子模型 盒子&#xff1a;页面中所有的元素&#xff08;标签&#xff09;&#xff0c;都可以看做是一个 盒子&#xff0c;由盒子将页面中的元素包含在一个矩形区域内&#xff0c;通过盒子的视角更方便的进行页面布局盒子模型组成&#xff1a;内容区域&#xff08;content&…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...