matlab实现层次聚类与k-均值聚类算法
1. 原理
1.层次聚类:通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程并生成聚类树
2.k-means聚类:在数据集中根据一定策略选择K个点作为每个簇的初始中心,然后将数据划分到距离这K个点最近的簇中,重新计算每个簇的中心点,然后在重新进行划分,直到每次划分的结果保持不变。
2. 过程
1.层次聚类:
样本点:x1= [0,0]T, x2=[0,1]T, x3=[2,0]T , x4= [3,3]T , x5= [4,4]T
将样本点存储在c1.txt文本文件中如下:

图1 c1文件中样本数据
在matlab中载入文件
分别将原始数据中的两列提取出来作为x坐标与y坐标用于绘制样本的分布图像,其实现如下:

图2
接下来通过linkage(c1,'single','euclidean')语句调用linkage函数,将样本点以最短距离作为类间距离,距离计算采用欧几里得距离,得到一个矩阵,其前2列为两个类的标号,第三列为类间的最短距离,然后通过dendrogram函数可以绘制出层次聚类树状图

图3
以上操作后结果如下:

图4 样本分布及聚类树状图
接下来为了进行分类,可以通过分割的方法得到不同的簇,这里采用群数目分割方式进行分割,调用cluster函数,设置簇的数目最大为2,最后调整标号绘制分类后的图像

图5
结果如下:

图6 分割后得到的结果
2.k-means聚类:
样本点:x1= [0,0]T, x2=[1,0]T, x3=[1,1]Tx4= [4,4]T, x5=[5,4]T, x6=[5,5]T
同样将样本点数据存储到kn1.txt文件中,如下图:

图7 kn1文件中样本数据
接下来开始进行聚类,实验设置簇的个数为2,通过kmeans函数对样本进行聚类,并且重复5次聚类,该函数可以返回簇的索引以及簇的中心点位置。

图8
然后调整标号绘制分类图像,结果如下:

图9 kmeans 聚类结果
3. 结果与分析
1.层次聚类
通过树状图可以看出程序的聚类顺序为x1x2,x4x5,x1x2x3,x1x2x3x4x5,每两个簇之间的距离如下:

图10 聚类过程中簇间距离
其中前两列1至5代表x1到x5初始5个簇,6代表x1x2形成的簇,7代表x4x5形成的簇,8代表x1x2x3形成的簇
2.k-means聚类

图11 聚类后两个簇的中心点坐标

图12 每个点到每个簇心的距离

图13 簇内各点到中心距离之和
相关文章:
matlab实现层次聚类与k-均值聚类算法
1. 原理 1.层次聚类:通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程并生成聚类树 2.k-means聚类:在数据集中根据一定策略选择K个点作为每个簇的初始中心,然后将数据划…...
【机器学习】包裹式特征选择之递归特征消除法
🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进…...
【ArcGIS】重采样栅格像元匹配问题:不同空间分辨率栅格数据统一
重采样栅格像元匹配问题:不同空间分辨率栅格数据统一 原始数据数据1:GDP分布数据2.1:人口密度数据2.2:人口总数数据3:土地利用类型 数据处理操作1:将人口密度数据投影至GDP数据(栅格数据的投影变…...
Qt 简约又简单的加载动画 第七季 音量柱风格
今天和大家分享两个音量柱风格的加载动画,这次的加载动画的最大特点就是简单,只有几行代码. 效果如下: 一共三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc…...
【JS】数值精度缺失问题解决方案
方法一: 保留字符串类型,传给后端 方法二: 如果涉及到计算,用以下方法 // 核心思想 在计算前,将数字乘以相同倍数,让他没有小数位,然后再进行计算,然后再除以相同的倍数࿰…...
c++基础知识补充4
单独使用词汇 using std::cout; 隐式类型转换型初始化:如A a1,,此时可以形象地理解为int i1;double ji;,此时1可以认为创建了一个值为1的临时对象,然后对目标对象进行赋值,当对象为多参数时,使用(1…...
leetcode230. 二叉搜索树中第K小的元素
lletcode 230. 二叉搜索树中第K小的元素,链接:https://leetcode.cn/problems/kth-smallest-element-in-a-bst 题目描述 给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 …...
医学大数据|文献阅读|有关“肠癌+机器学习”的研究记录
目录 1.机器学习算法识别结直肠癌中的免疫相关lncRNA signature 2.基于机器学习的糖酵解相关分子分类揭示了结直肠癌癌症患者预后、TME和免疫疗法的差异,2区7 3.整合深度学习-病理组学、放射组学和免疫评分预测结直肠癌肺转移患者术后结局 4.最新7.4分纯生信&am…...
Linux信号【systemV】
目录 前言 正文: 1消息队列 1.1什么是消息队列? 1.2消息队列的数据结构 1.3消息队列的相关接口 1.3.1创建 1.3.2释放 1.3.3发送 1.3.4接收 1.4消息队列补充 2.信号量 2.1什么是信号量 2.2互斥相关概念 2.3信号量的数据结构 2.4…...
node.js最准确历史版本下载
先进入官网:Node.js https://nodejs.org/en 嫌其他博客多可以到/release下载:Node.js,在blog后面加/release https://nodejs.org/en/blog/release/ 点击next翻页,同样的道理...
UE5 C++ 单播 多播代理 动态多播代理
一. 代理机制,代理也叫做委托,其作用就是提供一种消息机制。 发送方 ,接收方 分别叫做 触发点和执行点。就是软件中的观察者模式的原理。 创建一个C Actor作为练习 二.单播代理 创建一个C Actor MyDeligateActor作为练习 在MyDeligateAc…...
前端学习、CSS
CSS可以嵌入到HTML中使用。 每个CSS语法包含两部分,选择器和应用的属性。 div用来声明针对页面上的哪些元素生效。 具体设置的属性以键值对形式表示,属性都在{}里,属性之间用;分割,键和值之间用:分割。 因为CSS的特殊命名风格…...
Flink基本原理 + WebUI说明 + 常见问题分析
Flink 概述 Flink 是一个用于进行大规模数据处理的开源框架,它提供了一个流式的数据处理 API,支持多种编程语言和运行时环境。Flink 的核心优点包括: 低延迟:Flink 可以在毫秒级的时间内处理数据,提供了低延迟的数据…...
3. 文档概述(Documentation Overview)
3. 文档概述(Documentation Overview) 本章节简要介绍一下Spring Boot参考文档。它包含本文档其它部分的链接。 本文档的最新版本可在 docs.spring.io/spring-boot/docs/current/reference/ 上获取。 3.1 第一步(First Steps) …...
【vue3 路由使用与讲解】vue-router : 简洁直观的全面介绍
# 核心内容介绍 路由跳转有两种方式: 声明式导航:<router-link :to"...">编程式导航:router.push(...) 或 router.replace(...) ;两者的规则完全一致。 push(to: RouteLocationRaw): Promise<NavigationFailur…...
ubuntu创建账号和samba共享目录
新建用于登录Ubuntu图形界面的用户 sudo su #切换为root用户获取管理员权限用于新建用户 adduser username #新建用户(例如用户名为username) adduser username sudo #将用户添加到 sudo 组 新建只能用于命令行下登录的用户 sudo su #切换为root用户…...
李沐动手学习深度学习——3.6练习
本节直接实现了基于数学定义softmax运算的softmax函数。这可能会导致什么问题?提示:尝试计算exp(50)的大小。 可能存在超过计算机最大64位的存储,导致精度溢出,影响最终计算结果。 本节中的函数cross_entropy是根据交叉熵损失函数…...
机器学习_10、集成学习-Bagging(自举汇聚法)
Bagging(自举汇聚法) Bagging(Bootstrap Aggregating,自举汇聚法)是一种集成学习方法,由Leo Breiman于1996年提出。它旨在通过结合多个模型来提高单个预测模型的稳定性和准确性。Bagging方法特别适用于减少…...
【力扣hot100】刷题笔记Day20
前言 今天学习了一句话“自己如果不努力,屎都吃不上热乎的”,话糙理不糙,与君共勉 35. 搜索插入位置 - 力扣(LeetCode) 二分查找 class Solution:def searchInsert(self, nums: List[int], target: int) -> int:n…...
Redis 之八:Jdeis API 的使用(Java 操作 Redis)
Jedis API 使用 Jedis 是 Redis 官方推荐的 Java 客户端,它提供了一套丰富的 API 来操作 Redis 服务器。通过 Jedis API,开发者可以方便地在 Java 应用程序中执行 Redis 的命令来实现数据的增删查改以及各种复杂的数据结构操作。 以下是一些基本的 Jedis…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
