C++17之std::invoke: 使用和原理探究(全)
C++进阶专栏:http://t.csdnimg.cn/5mV9r
目录
1.概述
2.辅助类
3.原理分析
4.总结
1.概述
在之前的 C++ 版本中,要调用不同类型的可调用对象,需要使用不同的语法,例如使用函数调用运算符 () 来调用函数或函数指针,使用成员访问运算符 -> 或 . 来调用成员函数。这样的语法差异导致了代码的冗余和不一致,给编写和维护代码带来了困扰。
std::invoke
是 C++17标准库中引入的一个函数模板,它的引入就是为了解决这个问题,它提供了一种统一的调用语法,无论是调用普通函数、函数指针、类成员函数指针、仿函数、std::function、类成员还是lambda表达式,都可以使用相同的方式进行调用。
std::invoke
的语法如下:
template <typename Fn, typename... Args>
decltype(auto) invoke(Fn&& fn, Args&&... args);
它接受一个可调用对象 fn 和相应的参数 args...,并返回调用结果。例如:
#include <functional>
#include <iostream>
#include <type_traits>struct Foo
{Foo(int num) : num_(num) {}void print_add(int i) const { std::cout << num_ + i << '\n'; }int num_;
};void print_num(int i)
{std::cout << i << '\n';
}struct PrintNum
{void operator()(int i) const{std::cout << i << '\n';}
};int main()
{// 调用自由函数std::invoke(print_num, -9);// 调用 lambdastd::invoke([]() { print_num(42); });// 调用成员函数const Foo foo(314159);std::invoke(&Foo::print_add, foo, 1);// 调用(访问)数据成员std::cout << "num_:" << std::invoke(&Foo::num_, foo) << '\n';// 调用函数对象std::invoke(PrintNum(), 18);#if defined(__cpp_lib_invoke_r)auto add = [](int x, int y) { return x + y; };auto ret = std::invoke_r<float>(add, 11, 22);static_assert(std::is_same<decltype(ret), float>());std::cout << ret << '\n';std::invoke_r<void>(print_num, 44);
#endif
}
可能的输出:
-9
42
314160
num_:314159
18
33
44
通过 std::invoke
,我们可以在不关心可调用对象的具体类型的情况下进行调用,提高了代码的灵活性和可读性。它尤其适用于泛型编程中需要以统一方式调用各种可调用对象的场景,例如使用函数指针或成员函数指针作为模板参数的算法或容器等。
2.辅助类
阅读后面的内容,你必须事先了解以下内容:
1.constexpr
2.std::is_base_of_v
3.std::remove_cv_t
4.std::ref和std::cref
5.std::is_member_function_pointer
6.std::is_member_object_pointer_v
7.左值和右值
3.原理分析
从上面的例子我们可以猜想,std::invoke的实现应该是根据传入的参数Fn来判断出Fn是否为可调用对象(Callable),常见的可调用对象有:
- function
- member function
- function object
- lambda expression
- bind expression
- std::function
如果是可调用对象,那肯定也需要分析出是那种可调用对象,C++涉及到的可调用对象有:
1.普通函数,保证了对C的兼容。如:void func(int x, int y);
2.函数指针。和数组名一样,函数名即为函数指针。如:
typedef void(*FType)(int); //定义一个函数指针类型Ftypevoid func(FType fn, int x) {fn(x);}
3.类成员变量和成员函数
class CTestabcd{public:inline int func(int a, int b) { return a + b; }public:int m_i;};using TestFunc = int (CTestabcd::*)(int, int);using TestMember = int(CTestabcd::*);TestFunc gTestFunc = &CTestabcd::func;TestMember gTestMember = &CTestabcd::m_i;
4.仿函数(函数对象),即重载了operator()运算符的类对象,如:
template <class _Ty = void>struct less {_CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef _Ty _FIRST_ARGUMENT_TYPE_NAME;_CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef _Ty _SECOND_ARGUMENT_TYPE_NAME;_CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef bool _RESULT_TYPE_NAME;_NODISCARD constexpr bool operator()(const _Ty& _Left, const _Ty& _Right) const {return _Left < _Right;}};
std::bind绑定,它是STL的配接器,用于创建一个可调用的对象,对象里面重载了operator(),也是运用了仿函数的思想,如:
#include <iostream>
#include <functional>
#include <thread>
#include <chrono>
#include <vector>
#include <algorithm> void print_sum(int x, int y) { std::cout << x + y << "\n";
} int main() { std::vector<int> nums = {1, 2, 3, 4, 5}; auto bound_sum = std::bind(print_sum, std::placeholders::_1, 5); // 绑定第二个参数为 5。 std::for_each(nums.begin(), nums.end(), bound_sum); // 对于每个元素,输出它与 5 的和。 return 0;
}
5.lambda表达式,如:
auto f = [] { return "hello world"; };
cout << f() << endl; // 输出:hello world
6.std::function, 如:
#include <iostream>
#include <functional>// std::function
std::function<int(int, int)> SumFunction;// 普通函数
int func_sum(int a, int b)
{return a + b;
}class Calcu
{
public:int base = 20;// 类的成员方法,参数包含this指针int class_func_sum(const int a, const int b) const { return this->base + a + b; };// 类的静态成员方法,不包含this指针static int class_static_func_sum(const int a, const int b) { return a + b; };
};// 仿函数
class ImitateAdd
{
public:int operator()(const int a, const int b) const { return a + b; };
};// lambda函数
auto lambda_func_sum = [](int a, int b) -> int { return a + b; };// 函数指针
int (*func_pointer)(int, int);int main(void)
{int x = 2; int y = 5;// 普通函数SumFunction = func_sum;int sum = SumFunction(x, y);std::cout << "func_sum:" << sum << std::endl;// 类成员函数Calcu obj;SumFunction = std::bind(&Calcu::class_func_sum, obj, std::placeholders::_1, std::placeholders::_2); // 绑定this对象sum = SumFunction(x, y);std::cout << "Calcu::class_func_sum:" << sum << std::endl;// 类静态函数SumFunction = Calcu::class_static_func_sum;sum = SumFunction(x, y);std::cout << "Calcu::class_static_func_sum:" << sum << std::endl;// lambda函数SumFunction = lambda_func_sum;sum = SumFunction(x, y);std::cout << "lambda_func_sum:" << sum << std::endl;// 带捕获的lambda函数int base = 10;auto lambda_func_with_capture_sum = [&base](int x, int y)->int { return x + y + base; };SumFunction = lambda_func_with_capture_sum;sum = SumFunction(x, y);std::cout << "lambda_func_with_capture_sum:" << sum << std::endl;// 仿函数ImitateAdd imitate;SumFunction = imitate;sum = SumFunction(x, y);std::cout << "imitate func:" << sum << std::endl;// 函数指针func_pointer = func_sum;SumFunction = func_pointer;sum = SumFunction(x, y);std::cout << "function pointer:" << sum << std::endl;getchar();return 0;
}
通过上面的讲解,那我们看看std::invoke是不是这样去判断的呢?(以vs2019为蓝本),先看看源码:
//[1]函数没有参数的调用方式
template <class _Callable>
_CONSTEXPR17 auto invoke(_Callable&& _Obj) noexcept(noexcept(static_cast<_Callable&&>(_Obj)()))-> decltype(static_cast<_Callable&&>(_Obj)()) {return static_cast<_Callable&&>(_Obj)();
}//[2]除1之外的其他调用方式
template <class _Callable, class _Ty1, class... _Types2>
_CONSTEXPR17 auto invoke(_Callable&& _Obj, _Ty1&& _Arg1, _Types2&&... _Args2) noexcept(noexcept(_Invoker1<_Callable, _Ty1>::_Call(static_cast<_Callable&&>(_Obj), static_cast<_Ty1&&>(_Arg1), static_cast<_Types2&&>(_Args2)...)))-> decltype(_Invoker1<_Callable, _Ty1>::_Call(static_cast<_Callable&&>(_Obj), static_cast<_Ty1&&>(_Arg1), static_cast<_Types2&&>(_Args2)...)) {if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Functor) {return static_cast<_Callable&&>(_Obj)(static_cast<_Ty1&&>(_Arg1), static_cast<_Types2&&>(_Args2)...);} else if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmf_object) {return (static_cast<_Ty1&&>(_Arg1).*_Obj)(static_cast<_Types2&&>(_Args2)...);} else if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmf_refwrap) {return (_Arg1.get().*_Obj)(static_cast<_Types2&&>(_Args2)...);} else if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmf_pointer) {return ((*static_cast<_Ty1&&>(_Arg1)).*_Obj)(static_cast<_Types2&&>(_Args2)...);} else if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmd_object) {return static_cast<_Ty1&&>(_Arg1).*_Obj;} else if constexpr (_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmd_refwrap) {return _Arg1.get().*_Obj;} else {static_assert(_Invoker1<_Callable, _Ty1>::_Strategy == _Invoker_strategy::_Pmd_pointer, "bug in invoke");return (*static_cast<_Ty1&&>(_Arg1)).*_Obj;}
}
从上面的代码可以看到,传入参数 _Obj 的型别判断是通过类 _Invoker1 类型萃取出来的,这就是Type Traits技术。那现在来看一下_Invoker1的庐山真面目吧:
//【1】
template <class _Callable, class _Ty1, class _Removed_cvref = _Remove_cvref_t<_Callable>,bool _Is_pmf = is_member_function_pointer_v<_Removed_cvref>,bool _Is_pmd = is_member_object_pointer_v<_Removed_cvref>>
struct _Invoker1;//【2】
template <class _Callable, class _Ty1, class _Removed_cvref>
struct _Invoker1<_Callable, _Ty1, _Removed_cvref, true, false>: conditional_t<is_base_of_v<typename _Is_memfunptr<_Removed_cvref>::_Class_type, remove_reference_t<_Ty1>>,_Invoker_pmf_object,conditional_t<_Is_specialization_v<_Remove_cvref_t<_Ty1>, reference_wrapper>, _Invoker_pmf_refwrap,_Invoker_pmf_pointer>> {}; // pointer to member function//【3】
template <class _Callable, class _Ty1, class _Removed_cvref>
struct _Invoker1<_Callable, _Ty1, _Removed_cvref, false, true>: conditional_t<is_base_of_v<typename _Is_member_object_pointer<_Removed_cvref>::_Class_type, remove_reference_t<_Ty1>>,_Invoker_pmd_object,conditional_t<_Is_specialization_v<_Remove_cvref_t<_Ty1>, reference_wrapper>, _Invoker_pmd_refwrap,_Invoker_pmd_pointer>> {}; // pointer to member data//【4】
template <class _Callable, class _Ty1, class _Removed_cvref>
struct _Invoker1<_Callable, _Ty1, _Removed_cvref, false, false> : _Invoker_functor {};
1)在【1】处通过 is_member_function_pointer_v 判断是类成员函数指针,通过 is_member_object_pointer_v 判断是类成员变量
2)在【2】处指示的的是类成员函数指针,判断参数_Arg1是否为reference_wrapper类型的,即是传入对象添加了std::ref或std::cref包装。
3)在【3】处指示的是类成员变量指针,判断参数_Arg1是否为reference_wrapper类型的,即是传入对象添加了std::ref或std::cref包装。
4)在【4】处指示的是除【2】,【3】之外的函数。
型别推导出的类型有:
enum class _Invoker_strategy {_Functor, //普通函数,仿函数,lamdba表达式, std::function等_Pmf_object, //类成员函数,传递的是对象_Pmf_refwrap, //类成员函数,传递的是用std::ref或std::cref包装了的对象_Pmf_pointer, //类成员函数,传递的是对象的指针_Pmd_object, //类成员变量,传递的是对象_Pmd_refwrap, //类成员变量,传递的是用std::ref或std::cref包装了的对象_Pmd_pointer //类成员变量,传递的是对象的指针
};
至此,std::invoke的实现原理很清晰了吧。
4.总结
std::invoke用起来是十分的方便,方便的背后是系统帮你做了很多影藏的东西。也同样看出,C++的模版是多么的强大。如果喜欢就快去使用吧!
喜欢的同学点赞收藏呗!
参考:std::invoke, std::invoke_r - cppreference.com
相关文章:
C++17之std::invoke: 使用和原理探究(全)
C进阶专栏:http://t.csdnimg.cn/5mV9r 目录 1.概述 2.辅助类 3.原理分析 4.总结 1.概述 在之前的 C 版本中,要调用不同类型的可调用对象,需要使用不同的语法,例如使用函数调用运算符 () 来调用函数或函数指针,使用…...

shadertoy 游戏《来自星尘》摇杆复刻
正确的做法应该是上 noise 而不是叠加 sin 波,不过如果不想麻烦的话叠波还是一个不错的选择:整体效果如下,已经非常形似 直接上链接:Shader - Shadertoy BETA float radiusScale 0.9; float variation(vec2 v1, vec2 v2, float …...

获取PDF中的布局信息——如何获取段落
PDF解析是极其复杂的问题。不可能靠一个工具解决全部问题,尤其是五花八门,格式不统一的PDF文件。除非有钞能力。如果没有那就看看可以分为哪些问题。 提取文本内容,提取表格内容,提取图片。我认为这些应该是分开做的事情。python有…...
Laya2.13.3在Web条件下使用键盘控制相机移动
需求:在Laya开发时,常常没法移动相机来观察场内的环境,故制作一个移动相机的脚本来是实现此功能,目前先使用键盘后续会添加鼠标控制移动旋转等功能。 onEnable(){this.camera new Laya.Camera(0, 0.1, 100);this._tempVector3 n…...
centos系统服务器在Jenkins执行playwright UI自动化测试框架
centos系统服务器在Jenkins执行playwright UI自动化测试框架 1. centos7.9系统中安装playwright环境报错 playwright/driver/node: /lib64/libc.so.6: version `GLIBC_2.25 not found经过查找资料,playwright 仅支持Ubuntu系统,其他的Linux服务器系统不支持,为此采用docke…...
boost.redis崩溃的解决方法
使用boost.redis的协程一定要co_spawn在strand对象中。 正确的用法: boost::asio::co_spawn(boost::dasio::make_strand(ioc),XXXCoroutine(),boost::asio::detached ); 错误的用法: boost::asio::co_spawn(ioc,XXXCoroutine(),boost::asio::detache…...

蓝桥杯——123
123 二分等差数列求和前缀和数组 题目分析 连续一段的和我们想到了前缀和,但是这里的l和r的范围为1e12,明显不能用O(n)的时间复杂度去求前缀和。那么我们开始观察序列的特点,可以按照等差数列对序列进行分块。如上图,在求前10个…...

嵌入式基础知识-信号量,PV原语与前趋图
本篇来介绍信号量与PV原语的一些知识,并介绍其在前趋图上的应用分析。本篇的知识属于操作系统部分的通用知识,在嵌入式软件开发中,同样会用到这些知识。 1 信号量 信号量是最早出现的用来解决进程同步与互斥问题的机制(可以把信…...

代码遗产:探索祖传代码的历史、挑战与现代融合艺术
✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua,在这里我会分享我的知识和经验。&#x…...

Vue3:用vite创建Vue3项目
一、简介 vite是新一代前端构建工具,官网地址:https://vitejs.cn vite的优势如下: 轻量快速的热重载(HMR),能实现极速的服务启动。对 TypeScript、JSX、CSS 等支持开箱即用。真正的按需编译,不…...

STM32 (2)
1.stm32编程模型 将C语言程序烧录到芯片中会存储在单片机的flsah存储器中,给芯片上电后,Flash中的程序会逐条进入到CPU中去执行,进而CPU去控制各种模块(即外设)去实现各种功能。 2.寄存器和寄存器编程 CPU通过控制其…...
docker部署nginx+反向代理配置/代理宿主机网段服务器
1、安装docker,并运行 2、拉取nginx镜像 docker pull nginx3、运行nginx容器,将文件拷贝至本地,并将nginx容器删除 #运行nginx容器 docker run -id --name mynginx -p 8080:80 nginx#将配置文件从容器内拷贝至本地 docker cp 容器ID:/et…...

初识Hive
官网地址为: Design - Apache Hive - Apache Software Foundation 一、架构 先来看下官网给的图: 图上显示了Hive的主要组件及其与Hadoop的交互。Hive的主要组件有: UI: 用户向系统提交查询和其他操作的用户界面。截至2011年&…...
Google发布Genie硬杠Sora:通过大量无监督视频训练最终生成可交互虚拟世界
前言 Sora 问世才不到两个星期,谷歌的世界模型也来了,能力看似更强大:它生成的虚拟世界自主可控 第一部分 首个基础世界模型Genie 1.1 Genie是什么 Genie是第一个以无监督方式从未标记的互联网视频中训练的生成式交互环境(the first gener…...

全球首台!未磁科技256通道无液氦脑磁图仪及芯片化原子磁力计正式发布
2024年2月3日,由北京未磁科技有限公司牵头的国家重点研发计划诊疗装备与生物医用材料重点专项“新型无液氦脑磁图系统研发”项目2023年度总结会暨2024年推进会顺利召开。会上发布了项目取得的重大成果——全球首台256通道无液氦脑磁图仪Marvel MEG Pro。此项重磅成果…...
openssl3.2 - exp - 内存操作(建立,写入,读取)配置
文章目录 openssl3.2 - exp - 内存操作(建立,写入,读取)配置概述笔记调试细节运行效果测试工程实现main.cppCMyOsslConfig.hCMyOsslConfig.cppEND openssl3.2 - exp - 内存操作(建立,写入,读取)配置 概述 我的应用的配置文件是落地加密的, 无法直接用openssl配置接口载入读取…...

前端食堂技术周刊第 114 期:Interop 2024、TS 5.4 RC、2 月登陆浏览器的新功能、JSR、AI SDK 3.0
美味值:🌟🌟🌟🌟🌟 口味:凉拌鸡架 食堂技术周刊仓库地址:https://github.com/Geekhyt/weekly 大家好,我是童欧巴。欢迎来到前端食堂技术周刊,我们先来看下…...

#QT(信号与槽)
1.IDE:QTCreator 2.实验:自动添加槽函数,手动添加槽函数 3.记录 (1)自动添加 a.拖拽widget.ui,放置push-button组件,并且自动生成槽函数 b.发现widget.cpp和widget.h中出现添加的槽函数,注意w…...
go 设置滚动日志
方案 通过 log/slog 实现结构化日志生成,这是go1.21中推出的新特性;通过 lumberjack 实现日志文件分割。 示例 package mainimport ("gopkg.in/natefinch/lumberjack.v2""log/slog""os""path/filepath" )fun…...
Rollup入门学习:前端开发的构建利器
在前端开发领域,构建工具对于优化项目结构和提升代码效率扮演着至关重要的角色。Rollup作为一款轻量级且功能强大的JavaScript模块打包器,近年来备受开发者青睐。本文将带你走进Rollup的世界,帮助你快速入门并掌握其核心用法。 一、Rollup简介…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...