当前位置: 首页 > news >正文

32- PyTorch基础 (PyTorch系列) (深度学习)

知识要点

  •  PyTorch可以说是现阶段主流的深度学习框架 .


1 PyTorch入门

1.1 PyTorch概述

Torch是什么?一个火炬!其实跟Tensorflow中Tensor是一个意思,可以当做是能在GPU中计算的矩阵.,也可以当做是ndarray的GPU版

PyTorch可以说是现阶段主流的深度学习框架,武林盟主之争大概是这个历史。15年底之前Caffe是老大哥,随着Tensorflow的诞生,霸占江湖数载,19年起无论从学术界还是工程界PyTorch已经霸占了半壁江山!

1.2 PyTorch安装

打开PyTorch 官网, 根据官网的安装提示选择符合自己情况的选项, 生成安装语句, 拷贝安装语句进行安装.

2. PyTorch张量

Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵.

张量类似于NumPy的ndarrays,张量可以在GPU上使用以加速计算。

2.1 张量与数据类型

import torch
import numpy as np
import pandas as pd
  • 创建tensor: 可以直接使用python列表或者ndarray创建tensor
x = torch.tensor([6, 2])
x = torch.tensor(np.array([1, 2, 3]))
  • 与ndarray类似, pytorch也有很多快捷的方法用来创建张量.
import torch# 创建一个[0, 1)之间的随机均匀分布
x = torch.rand(2, 3)
print(x)# 创建一个标准正态分布
x = torch.randn(2, 3)
print(x)# 创建全是0的tensor
x = torch.zeros(2, 3)
print(x)# 创建全是1的tensor
x = torch.ones(2, 3)
print(x)

  • 类似的可以通过shape或size获取tensor的形状, size可以具体制定获取哪一个维度的形状大小:
x = torch.ones(2, 3, 4)
x.shape
# 输出 torch.Size([2, 3, 4])
x.size()
# 输出 torch.Size([2, 3, 4])
x.size(0)
# 输出 2

2.2 Tensor基本数据类型

pytorch中的tensor有以下基本数据类型

  • 32位浮点型: torch.float32

  • 64位浮点型: torch.float64

  • 32位整型: torch.int32

  • 16位整型: torch.int16

  • 64位整型: torch.int64

我们可以在创建tensor的时候通过dtype指定数据类型:

x = torch.tensor([6, 2], dtype=torch.float32)# 通过.type转换数据类型
x.type(torch.int64)    # tensor([6, 2])

2.3 与ndarray数据类型的转换

ndarray可以和tensor进行转换

import numpy as np# 标准正太分布
a = np.random.randn(2, 3)
# 通过from_numpy可以把ndarray转化为tensor
x1 = torch.from_numpy(a)
# tensor通过numpy也可以转化为ndarray
x1.numpy()
'''array([[ 0.00346987,  0.49298463,  0.8929266 ],[-1.21628393, -0.93081964, -0.16680752]])'''

2.4 张量运算

tensor的运算规则和numpy的运算规则很类似:

import numpy as npa = np.random.randn(2, 3)
# 通过from_numpy可以把ndarray转化为tensor
x1 = torch.from_numpy(a)
x = torch.ones(2, 3)# 和单个数字运算, tensor中每个元素分别和这个数字运算
x + 3
'''输出:tensor([[4., 4., 4.],[4., 4., 4.]], dtype=torch.float64)'''# 两个形状相同的tensor进行运算, 对应位置元素分别运算.
x + x1# 也可以调用pytorch的运算方法, 结果是一样的
x.add(x1)# 加了下划线表示对x本来的值进行修改
x.add_(x1)# 改变tensor的形状, 使用.view, 相当于numpy中的reshape
x.view(3, 2)
x.view(-1, 1)
print(x)
'''tensor([[-0.7429,  0.5438, -0.0259],[ 0.8848, -0.0550,  2.7443]])'''# 单个元素的张量使用.item()转化为python数据
x = x.mean()   # tensor(0.5582)
x.item()    # 0.5581828951835632

2.5 张量的自动微分

将Torch.Tensor属性 .requires_grad 设置为True,

pytorch将开始跟踪对此张量的所有操作。

完成计算后,可以调用 .backward() 并自动计算所有梯度。

该张量的梯度将累加到.grad属性中。

x = torch.ones(2, 2, requires_grad=True)
x.requires_grad    # 输出 True# 进行张量运算
y = x + 2# y是由于运算而创建的,因此具有grad_fn属性
print(y.grad_fn)
# 输出: <AddBackward0 object at 0x00000096768B1708># 进行更多操作
z = y * y * 3
out = z.mean()print(z, out)
# 输出
#tensor([[27., 27.],#[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)

2.6 计算梯度

out.backward()    # 自动微分运算, 注意 out 是标量值
# 打印梯度 d(out)/ dx out = f(x)
print(x.grad)
# tensor([[4.5000, 4.5000],# [4.5000, 4.5000]])

当张量的 requires_grad 属性为 True 时,

pytorch会一直跟踪记录此张量的运算

当不需要跟踪计算时,可以通过将代码块包装在 with torch.no_grad(): 上下文中

print(x.requires_grad)    # True
print((x ** 2).requires_grad)    # Truewith torch.no_grad():print((x ** 2).requires_grad)    # False

也可使用 .detach() 来获得具有相同内容但不需要跟踪运算的新Tensor :

print(x.requires_grad)    # True
y = x.detach()
print(y.requires_grad)    # False

使用 requires_grad_ 就地改变张量此属性:

a = torch.randn(2, 2)
a = a*3 + 2
print(a.requires_grad)
# 输出 False
a.requires_grad_(True)
print(a.requires_grad)
# 输出True

相关文章:

32- PyTorch基础 (PyTorch系列) (深度学习)

知识要点 PyTorch可以说是现阶段主流的深度学习框架 . 1 PyTorch入门 1.1 PyTorch概述 Torch是什么&#xff1f;一个火炬&#xff01;其实跟Tensorflow中Tensor是一个意思&#xff0c;可以当做是能在GPU中计算的矩阵.&#xff0c;也可以当做是ndarray的GPU版&#xff01; PyT…...

用gdb.attach()在gdb下断点但没停下的情况及解决办法

在python中&#xff0c;如果导入了pwntools&#xff0c;就可以使用里面的gdb.attach(io)的命令来下断点。 但是这一次鼠鼠遇到了一个情况就是下了断点&#xff0c;但是仍然无法在断点处开始运行&#xff0c;奇奇怪怪。 这是我的攻击脚本 我们运行一下。 可以看到其实已经运行起…...

Linux入门篇-作业(jobs)调度(本质仍然是进程)

简介 之所以叫做作业调度&#xff0c;作业是以shell为单位的&#xff0c;一个shell建立的作业&#xff0c;不会被另外一个shell看到&#xff08;包 括root&#xff09;&#xff0c;但是仍然可以看到作业对应的进程。①前台进程&#xff08;front process&#xff09; 运行在用户…...

vue 监听 取消监听

vue 的 watch 除了可以使用声明式的配置项以外&#xff0c;还可以通过命令式 this.$watch 方法。 如下是我们比较少用的命令式&#xff08;想要初始只监听一次&#xff0c;必须命令式写法&#xff09;&#xff1a; 监听只运行一次 声明式 export default{data: {showType: fa…...

0103深度优先搜索和单点连通-无向图-数据结构和算法(Java)

文章目录1.1 走迷宫1.2 图的深度优先搜索实现1.3 算法分析及性能1. 4 单点连通性后记1.1 走迷宫 简单的迷宫&#xff0c;如下图1.1-1所示&#xff1a; 探索迷宫而不迷路&#xff0c;我们需要&#xff1a; 选择一条没有标记过的通道&#xff0c;在你走过的路上铺一条绳子&…...

进销存管理系统

技术&#xff1a;Java等摘要&#xff1a;进销存管理系统是为了实现企业仓库商品管理的系统化、规范化和自动化&#xff0c;从而提高企业管理效率而设计开发的管理信息系统。它完全取代了过去一直用人工管理的工作方式&#xff0c;避免了由于管理人员手工操作上的疏忽以及管理质…...

Sonar:VSCode配置SonarLint/SonarLint连接SonarQube

需求描述 公司为项目代码配置了Sonar检测&#xff0c;希望在VSCode中开发项目时能够同步检测结果。 注意事项 SonarQube版本必须为7.9&#xff0c;否则SonarLint无法连接&#xff08;GitHub-SonarLint-Wiki第一行就有说明&#xff09;&#xff01;&#xff01;&#xff01;S…...

陀螺仪小车(Forerake-Car)

项目简介&#xff1a;搭建一辆有arduino UNO 与rnf24l01组成的小车&#xff1b;手部安装由arduino nano开发板、nrf24l01、imu构成的手势控制器&#xff0c;利用手势控制器检测手部状态、发送信号对小车进行前进&#xff0c;实现基于卡尔曼滤波的MPU6050姿态结算。 准备工作&am…...

Leetcode Day5 含有重复元素集合的组合+

1、含有重复元素集合的组合 给定一个可能有重复数字的整数数组 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用一次&#xff0c;解集不能包含重复的组合。 【题目传送门】 思…...

Mac Book pro(M1)使用总结

1、拿到电脑激活的时候&#xff0c;一定要记住账号密码及安全问题的答案。 2、显示隐藏文件夹&#xff1a; 3、显示.git或者gitignore等隐藏后缀的文件&#xff1a; 打开终端 defaults write com.apple.finder AppleShowAllFiles TRUE重启Finder在终端输入 killall Finder …...

QML集成JavaScript

在QML中可以使用现有的QML元素来创建页面&#xff0c;但QML紧密的集成了必要的JavaScript。 但QML中使用JavaScript比较严格&#xff0c;在QML中不可以添加或修改JavaScript全局对象成员&#xff0c;这样可能会使用一个未经声明的变量。 内联JavaScript 一些小型的JavaScript函…...

学习周报3.5

文章目录前言文献阅读摘要介绍方法总结相关性总结前言 本周阅读文献《Multi-step ahead probabilistic forecasting of multiple hydrological》&#xff0c;文献主要提出一种基于三维卷积神经网络、卷积最小门记忆神经网络和变分贝叶斯神经网络的混合深度学习模型&#xff08…...

java基础学习篇

java学习 多写&#xff08;代码、笔记、文章&#xff09;&#xff0c;多练&#xff08;交流、思维、技能&#xff09;&#xff0c;多分享&#xff0c;多提问、多思考 什么是计算机 由硬件和软件组成&#xff0c;广泛应用在科学计算、数据处理、自动控制&#xff0c;计算机辅…...

Go 语言基础语法及应用实践

Go语言是一门由Google开发的静态类型、编译型的开源编程语言,被设计成简单、高效、安全的语言。作为一门相对年轻的语言,Go语言的使用范围正在不断扩大,特别是在Web开发、云计算、容器化和分布式系统等领域越来越受到欢迎。 在本篇文章中,我们将探讨Go语言的基础语法及应用…...

C语言自定义类型---进阶

之前的文章中有结构体初阶知识的讲解&#xff0c;对结构体不是很了解的小伙伴可以先去去看一下结构体初阶 结构体&#xff0c;枚举&#xff0c;联合结构体结构体类型的声明特殊的声明结构的自引用结构体变量的定义和初始化结构体内存对齐 <3 <3 <3(重点)那为什么存在内…...

85.链表总结

链表总结 链表总结与进阶 抽象数据类型&#xff08;ADT abstract data type&#xff09;与抽象数据接口&#xff08;ADI abstract data Interface&#xff09; 链表实际上就是对于结构体、结构体指针和结构体内可以包含指向同类型的结构体指针不可以包含指向同类型的结构体的应…...

【博学谷学习记录】超强总结,用心分享|狂野大数据课程【DataFrame的相关API】的总结分析

操作dataFrame一般有二种操作的方式, 一种为SQL方式, 另一种为DSL方式 SQL方式: 通过编写SQL语句完成统计分析操作DSL方式: 领域特定语言 指的通过DF的特有API完成计算操作(通过代码形式)从使用角度来说: SQL可能更加的方便一些, 当适应了DSL写法后, 你会发现DSL要比SQL更加…...

粒子群优化最小二乘支持向量机SVM回归分析,pso-lssvm回归预测

目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 SVM应用实例,粒子群优化最小二乘支持向量机SVM回归分析 代码 结果分析 展望 支持向量机SVM的详细原理 SVM的定义 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大…...

lavis多模态开源框架学习--安装

安装lavis安装lavis测试安装问题过程中的其他操作安装lavis 因为lavis已经发布在pypi中&#xff0c;所以可以直接利用pip安装 pip install salesforce-lavis测试安装 from lavis.models import model_zoo print(model_zoo) # # Architectures Types # # …...

【IDEA】如何在Tomcat上创建部署第一个Web项目?

看了网上很多教程&#xff0c;发现或多或都缺失了一些关键步骤信息&#xff0c;对于新手小白很不友好&#xff0c;那么今天就教大家如何在Tomcat服务器&#xff08;本地&#xff09;上部署我们的第一个Web项目&#xff1a; 共分为三个部分&#xff1a; 1. IDEA创建Web项目&am…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...