【深度学习】TensorFlow基础介绍
TensorFlow
模型
张量、变量共同点:具有形状、类型、值等3个属性。
不同点:变量可被TensorFlow的自动求导机制求导,常被用于机器学习模型的参数。
tfrecord
tensorflow定义的数据格式,一种二进制文件格式,用于保存和读取图像和文本数据。tfrecord文件包含了tf.train.Example protobuf数据。It is designed for use with TensorFlow and is used throughout the higher-level APIS such as TFX.
基本结构与数据类型
tf.train.Example的数据结构是一个字典称为Features,其内部结构可从proto文件看出:
message Example {Features features = 1;
};message Features{map<string, Feature> featrue = 1;
};message Feature{oneof kind{BytesList bytes_list = 1;FloatList float_list = 2;Int64List int64_list = 3;}
};
数据类型Feature有3个,Int64、Bytes、Float;Int64存储bool、Enum、uint32、int32、int64、uint64,Bytes存储字符串、二进制,Float存储float(float32)和double(float64)。
文件格式即把数据参考字典结构做二进制数据的protobuf序列化,称为string。
def serialize_example(f1, f2, f3, f4):fts = {"feature0": _int64_feature(f1),"feature1": _int64_feature(f2),"feature2": _bytes_feature(f3),"feature3": _float_feature(f4),}m = tf.train.Example(features=tf.train.Features(feature=fts))return m.SerializeToString()
ps = serialize_example(3, True, b"goal", 0.999)
ex_proto = tf.train.Example.FromString(ps)
tf.train.Feature是被tf.train.Example兼容的。
import tensorflow as tf
def _bytes_feature(x):if isinstance(x, type(tf.constant(0))):x = x.numpy()return tf.train.Feature(bytes_list=tf.train.BytesList(value=[x]))
读写tfrecord文件
- 写文件
# Write the `tf.train.Example` observations to the file.
with tf.io.TFRecordWriter(filename) as writer:for i in range(n_observations):example = serialize_example(feature0[i], feature1[i], feature2[i], feature3[i])writer.write(example)
- 读文件
fn = "./Waymo.tfrecord"
rd = tf.data.TFRecordDataset(fn)
# 数据格式
feature_description = {'feature0': tf.io.FixedLenFeature([], tf.int64, default_value=0),'feature1': tf.io.FixedLenFeature([], tf.int64, default_value=0),'feature2': tf.io.FixedLenFeature([], tf.string, default_value=''),'feature3': tf.io.FixedLenFeature([], tf.float32, default_value=0.0),
}def _parse_function(example_proto):# Parse the input `tf.train.Example` proto using the dictionary above.return tf.io.parse_single_example(example_proto, feature_description)parsed_dataset = raw_dataset.map(_parse_function)
for parsed_record in parsed_dataset.take(10):print(repr(parsed_record))
Waymo Open Dataset
采用tfrecord的数据协议,Dataset结构需参考
https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/dataset.proto
使用Python库waymo-open-dataset
#与tensorflow版本对应,如tf为2.3.0
pip3 install waymo-open-dataset-tf-2-3-0 --user
fn = ["/data/Waymo_training_segment-10023947602400723454_1120_000_1140_000_with_camera_labels.tfrecord"
]
dataset = tf.data.TFRecordDataset(fn)
for data in dataset.take(1000):frame = open_dataset.Frame()frame.ParseFromString(bytearray(data.numpy()))# plt.figure(figsize=(25, 20))# for index, image in enumerate(frame.images):# show_camera_image(image, frame.camera_labels, [3, 3, index+1])# plt.show()ts = frame.timestamp_microsst_img = frame.images[0]for labels in frame.camera_labels:if labels.name == st_img.name:for label in labels.labels:x = int(label.box.center_x - 0.5 * label.box.length)y = int(label.box.center_y - 0.5 * label.box.width)width = int(label.box.length)height = int(label.box.width)
重复造轮子:用tf.io实现读取数据集。
问题
https://stackoverflow.com/questions/61166864/tensorflow-python-framework-ops-eagertensor-object-has-no-attribute-in-graph
Waymo Open Dataset文件解析格式,如何确定字典结构
raw_image_dataset = tf.data.TFRecordDataset('images.tfrecords')# Create a dictionary describing the features.
image_feature_description = {'height': tf.io.FixedLenFeature([], tf.int64),'width': tf.io.FixedLenFeature([], tf.int64),'depth': tf.io.FixedLenFeature([], tf.int64),'label': tf.io.FixedLenFeature([], tf.int64),'image_raw': tf.io.FixedLenFeature([], tf.string),
}def _parse_image_function(example_proto):# Parse the input tf.train.Example proto using the dictionary above.return tf.io.parse_single_example(example_proto, image_feature_description)parsed_image_dataset = raw_image_dataset.map(_parse_image_function)
相关文章:
【深度学习】TensorFlow基础介绍
TensorFlow 模型 张量、变量共同点:具有形状、类型、值等3个属性。 不同点:变量可被TensorFlow的自动求导机制求导,常被用于机器学习模型的参数。 tfrecord tensorflow定义的数据格式,一种二进制文件格式,用于保存…...
springcloud:3.3测试重试机制
服务提供者【test-provider8001】 Openfeign远程调用服务提供者搭建 文章地址http://t.csdnimg.cn/06iz8 相关接口 测试远程调用:http://localhost:8001/payment/index 服务消费者【test-consumer-resilience4j8004】 Openfeign远程调用消费者搭建 文章地址http:/…...
【笔记】【电子科大 离散数学】 3.谓词逻辑
谓词引入 因为含变量的语句(例如x > 3)不是命题,无法进行逻辑推理。 为了研究简单命题句子内部的逻辑关系,我们需要对简单命题进行分解,利用个体词,谓词和量词来描述它们,并研究个体与总体…...
倍增算法C++
倍增 倍增算法是一种优化算法,通常用于某些需要高效计算指数幂的场景。它基于分治的思想,通过反复求平方来实现快速计算指数幂的目的。在实际应用中,倍增算法经常用于解决最近公共祖先问题、二分查找等。 1、快速幂详解 ksm核心代码 倍增就是…...
uniapp制作--进步器的选择
介绍: 进步器的选择,一般用于商城购物选择物品数量的场景 注意:该输入框只能输入大于或等于0的整数 效果展示: 代码展示: 以下是一个简单的购物车页面示例,包括选择商品和显示数量的功能: 在这个示例中…...
前端高频面试--查缺补漏篇
什么是进程和线程,有什么区别 进程:进程是程序的一次执行过程,是动态的过程,有自身产生、存在、消亡的过程。 线程:线程由进程创建,是进程的一个实体。一个进程可以拥有多个线程。 举个例子:…...
【计算机学习】-- 网页视频加速
系列文章目录 文章目录 系列文章目录前言一、开发者选项二、定义和用法1.基础语法:2.什么是uncaught TypeError:Cannot read properties of null? 二、开发者工具面板:1.Elements面板:2.Console面板: 总结 前言 一、开发者选项 …...
系统运维-Linux配置C、C++、Go语言编译环境
C yum install gcc -y #安装gcc编译器 gcc --version #验证环境gcc (GCC) 11.3.1 20221121 (Red Hat 11.3.1-4) Copyright (C) 2021 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even f…...
【设计模式】(二)设计模式六大设计原则
一、 设计原则概述 设计模式中主要有六大设计原则,简称为SOLID ,是由于各个原则的首字母简称合并的来(两个L算一个,solid 稳定的),六大设计原则分别如下: 1、单一职责原则(Single Responsibitity Principle&#…...
go-zero官网
go-zero 是一个集成了各种工程实践的 web 和 rpc 框架。通过弹性设计保障了大并发服务端的稳定性,经受了充分的实战检验。 go-zero官网:go-zero 缩短从需求到上线的距离...
Redis的应用场景以及常见问题(持续更新)
一、使用场景 1,在大型的秒杀库存扣减,app首页流量高峰,很容易将传统的关系型数据库(mysql,oracle等)给压垮 2,还有很多没必要持久化的数据,比如说短信验证码,点赞数等 3,…...
前端添加压缩包内文件名称校验
1. tar包内文件名称校验 1. 读取tar包内所有的文件名称 export class TarReader {fileInfo: any[]buffer: string | ArrayBufferconstructor() {this.fileInfo []}readFile(file) {return new Promise(resolve > {const reader new FileReader()reader.onload event &g…...
redis02 安装
官网下载 传送门https://redis.io/download/#redis-downloads 安装Redis mac m1安装 下载你需要版本的软件包放到指定的目录下进行解压 cd 到解压好的redis目录 运行下面的命令进行编译测试 sudo make test 中途可能会提示你安装make工具,按提示安装即可&…...
#QT(QT时钟)
1.IDE:QTCreator 2.实验 3.记录 qtime(qt的时间类) qtimer(qt的定时类) 4.代码 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTime> // #include <QTimer&g…...
T-RAG:结合实体检测的增强检索生成模型
内容摘要: T-RAG是一种新的大型语言模型(LLM)应用框架,在保证数据隐私的同时,提高了对私有企业文档的问答系统性能。T-RAG通过结合已有的增强检索生成(RAG)框架、自定义的开源语言模型以及一个实…...
u-boot: NAND 驱动简介
文章目录 1. 前言2. NAND 初始化3. 访问 NAND 设备3.1 查看 NAND 设备信息3.1.1 查看 NAND 设备基本信息3.1.2 查看 NAND 设备 MTD 分区3.1.3 查看 NAND 设备坏块 3.2 NAND 擦除操作3.3 NAND 写操作3.4 NAND 读操作3.5 其它 NAND 操作 1. 前言 限于作者能力水平,本…...
史上最全的大数据开发八股文【自己的吐血总结】
自我介绍 我本硕都是双非计算机专业,从研一下开始学习大数据开发的相关知识,从找实习到秋招,我投递过100公司,拿到过10的offer,包括滴滴、字节、蚂蚁、携程、蔚来、去哪儿等大厂(岗位都是大数据开发&#…...
数据库学习案例20240304-mysql数据库案例总结(碎片,统计信息)
1 表中的碎片 在InnoDB中删除行的时候,这些行只是被标记为“已删除”,而不是真正从物理存储上进行了删除,因而存储空间也没有真正被释放回收。InnoDB的Purge线程会异步地来清理这些没用的索引键和行。但是依然没有把这些释放出来的空间还给操…...
【小白友好】LeetCode 删除并获得点数
基础题 打家劫舍https://leetcode.cn/problems/house-robber/ 小白解法 删除nums[i]就会使得所有nums[i]-1和nums[i]1的值都消失,手写了几个,发现找来找去不方便,还不如先排个序,然后这样nums[i]-1和nums[i]和nums[i]1就能靠在…...
c#委托、lambda、事件
Lambda Lambda表达式是一种匿名函数,Lambda表达式通常以箭头“>”分隔左侧的输入和右侧的输出。 (parameter_list) > { statement_block } parameter_list 是由一个或多个参数组成的逗号分隔列表,每个参数都包括类型和名称,可以为空。…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
