算法练习-二分查找(一)
算法练习-二分查找
1 代码实现
1.1 非递归实现
public int bsearch(int[] a, int n, int value) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;if (a[mid] == value) {return mid;} else if (a[mid] < value) {low = mid + 1} else {high = mid - 1;}}return -1;
}
1.2 递归实现
public int bsearch_r(int[] a, int n, int value) {return bsearch(a, 0, n - 1, value);
}public int bsearch(int[] a, int low, int high, int value) {if (low > high) return -1;int mid = (low + high) / 2;if (a[mid] == value) {return mid;} else if (a[mid] < value) {return bsearch(a, mid + 1, high, value);} else {return bsearch(a, low, mid - 1, value);}
}
2 解题技巧
二分查找的正确姿势:
- 查找区间永远是闭区间[low, high]
- 循环条件永远是:low < high
- 对于low == high的情况,必要的时候特殊处理,在while内部补充退出条件
- 返回值永远是mid,不是low、high
- low、high的更新永远是low = mid + 1 和 high = mid - 1
- 对于非确定性查找,使用前后探测法来确定搜索区间
- 先处理命中目标,再处理左右半部分查找的情况
3 查找第一个等于x、最后一个等于x的元素
3.1 查找第一个等于x的元素
public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) {if ((mid == 0) || (a[mid - 1] != target)) return mid;else high = mid - 1;} else if (a[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return -1;
}
3.2 查找最后一个等于x的元素
public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) {if ((mid == n - 1) || (a[mid + 1] != target)) return mid;else low = mid + 1;} else if (a[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return -1;
}
4 查找第一个大于等于x,最后一个小于等于x的数
4.1 查找第一个大于等于x的数
public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] >= target) {if ((mid == 0) || (a[mid - 1] < target)) return mid;else high = mid - 1;} else {low = mid + 1;}}return -1;
}
4.2 查找最后一个小于等于x的数
public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if ((mid == n - 1) || (a[mid + 1] > target)) return mid;else low = mid + 1;} else {high = mid - 1;}
}
return -1;
}
5 循环有序数组中查找元素x
public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) return mid;else if (a[low] <= a[mid]) {if (target >= a[low] && target < a[mid]) {high = mid - 1;} else {low = mid + 1;}} else {if (target > a[mid] && target <= a[high]) {low = mid + 1;} else {high = mid - 1;}}}return -1;
}
6 循环有序数组查找最小值
public int bsearch(int[] a, int n) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;if (low == high) return mid;if ((mid != 0 && a[mid] < a[mid - 1]) || (mid == 0 && a[mid] < a[high]) {return mid;} else if (a[mid] > a[high]) {low = mid + 1;} else {high = mid - 1;}}return -1;
}
7 查找峰值
链接:https://leetcode.cn/problems/find-peak-element
7.1 题目
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。
示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。
示例 2:
输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;
或者返回索引 5, 其峰值元素为 6。
提示:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
对于所有有效的 i 都有 nums[i] != nums[i + 1]
7.2 题解
class Solution {public int findPeakElement(int[] nums) {int n = nums.length;int low = 0;int high = n - 1;while (low <= high) {int mid = (high + low) / 2;if (mid == 0) {if (n == 1) return 0;else if (nums[mid] > nums[mid + 1]) return mid;else low = mid + 1;} else if (mid == n - 1) {if (nums[mid] > nums[mid - 1]) return mid;else high = mid - 1;} else if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) {return mid;} else if (nums[mid] > nums[mid - 1]) {low = mid + 1;} else {high = mid - 1;}}return 0;}
}
8 x的平方根
链接:https://leetcode.cn/problems/sqrtx
8.1 题目
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
示例 1:
输入:x = 4
输出:2
示例 2:
输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。
8.2 题解
class Solution {public int mySqrt(int x) {if (x == 0) return 0;int low = 1;int high = x / 2 + 1;while (low <= high) {int mid = low + (high - low) / 2;long mid2 = (long)mid * mid;if (mid2 <= x) {long mid22 = ((long)mid + 1) * (mid + 1);if (mid22 <= x) {low = mid + 1;} else {return mid;}} else {high = mid - 1; }}return -1;}
}
相关文章:
算法练习-二分查找(一)
算法练习-二分查找 1 代码实现 1.1 非递归实现 public int bsearch(int[] a, int n, int value) {int low 0;int high n - 1;while (low < high) {int mid (low high) / 2;if (a[mid] value) {return mid;} else if (a[mid] < value) {low mid 1} else {high …...

通用业务平台设计(五):预警平台建设
前言 在上家公司,随着业务的不断拓展(从支持单个国家单个主体演变成支持多个国家多个主体),对预警的诉求越来越紧迫;如何保障业务的稳定性那?预警可以帮我们提前甄别风险,从而让我们可以在风险来临前将其消灭ÿ…...

Windows openssl-1.1.1d vs2017编译
工具: 1. perl(https://strawberryperl.com/) 2. nasm(https://nasm.us/) 3. openssl源码(https://www.openssl.org/) 可以自己去下载 或者我的网盘提供下载: 链接:…...

【深蓝学院】手写VIO第2章--IMU传感器--笔记
0. 内容 1. 旋转运动学 角速度的推导: 左ω∧\omega^{\wedge}ω∧,而ω\omegaω是在z轴方向运动,θ′[0,0,1]T\theta^{\prime}[0,0,1]^Tθ′[0,0,1]T 两边取模后得到结论: 线速度大小半径 * 角速度大小 其中,对旋转矩…...

网络基础(二)之HTTP与HTTPS
应用层 再谈 "协议" 协议是一种 "约定". socket api的接口, 在读写数据时, 都是按 "字符串" 的方式来发送接收的. 如果我们要传输一些"结构化的数据" 怎么办呢? 为什么要转换呢? 如果我们将struct message里面的信息…...

Python每日一练(20230306)
目录 1. 翻转二叉树 ★★ 2. 最长公共前缀 ★★ 3. 2的幂 ★ 1. 翻转二叉树 翻转一棵二叉树。 示例 1: 输入: 4/ \2 7/ \ / \ 1 3 6 9 输出: 4/ \7 2/ \ / \ 9 6 3 1示例 2: 输入: 1…...

C/C++每日一练(20230305)
目录 1. 整数分解 ☆ 2. 二叉树的最小深度 ★★ 3. 找x ★★ 1. 整数分解 输入一个正整数,将其按7进制位分解为各乘式的累加和。 示例 1: 输入:49 输出:497^2示例 2: 输入:720 输出:720…...
SAS字典的应用
数据字典中常用信息检索DICTIONARY.COLUMNS、DICTIONARY.TABLES以及DICTIONARY.MEMBERS等字典表的内容。在编程实践中,如何以SAS字典表来提高效率。 1、DICTIONARY.COLUMNS 对于当前SAS任务的全部数据集,表格DICTIONARY.COLUMNS包含了诸如变量的名称、类…...
Mysql中的函数和触发器
函数函数是什么?多用于查询语句,实现了某种功能;用途与存储过程不同,但语法是类似的;函数语法create function 函数名([参数列表]) returns 数据类型 begin DECLARE 变量; sql 语句; return 值; end; 设置函…...

分布式架构之(Zookeeper原理)
Zookeeper是一个典型的分布式数据一致性的结局方案,分布式应用程序可以基于它实现注入数据发布、订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master选举、分布式锁和分布式队列等功能, Zookeeper可以保证如下分布式一致性特性: 顺…...
Java框架学习 | MyBatis
问题导向学习MyBatis 为什么要有MyBatis框架? 避免Java开发者直接使用 JDBC重复做数据库操作,同时更便捷地实现想要的数据库相关功能,让Java专注于开发业务。 MyBatis框架如何实现该目的? MyBatis是半自动化持久层ORM框架&#x…...

Cookie+Session详解
文章目录批量删除会话技术简介CookieCookie 查看Cookie 的删除Cookie 使用页面获取 cookie 信息cookie 特点Sessionsession 的使用Session 登录权限验证过滤器简介过滤器的使用WebFilter 注解过滤放行登录权限验证批量删除 servlet 类 dao 层 会话技术 简介 在计算机领域…...

CAPL脚本要注意区分elcount和strlen求数组长度的区别,不然要吃大亏
🍅 我是蚂蚁小兵,专注于车载诊断领域,尤其擅长于对CANoe工具的使用🍅 寻找组织 ,答疑解惑,摸鱼聊天,博客源码,点击加入👉【相亲相爱一家人】🍅 玩转CANoe&…...

CSS常用选择器
目录 1.CSS是什么 2.CSS的三种写法 2.1内部样式 2.2内联样式 2.3外部样式 3.CSS选择器 3.1标签选择器 3.2类选择器(更好的选择) 3.3ID选择器 3.4后代选择器 3.5子选择器 3.6并集选择器 3.7伪类选择器(复合选择器的特殊用法) 1.CSS是什么 CSS全称Cascding Style Sh…...

Registry与DGC的攻击利用
0x01 2022-02-03写的一篇文章。 0x02 Registry Registry指的是RMI的注册表,攻击的目标是注册表所在的机器,一般注册表和RMI Server在同一个机器上,特殊情况下也会在不同机器上。 在我们通过LocateRegistry#getRegistry获取到目标开启的注…...
赛道持续降温!又一家自动驾驶公司裁员,市值曾超50亿美元
从去年下半年开始,自动驾驶赛道的裁员、倒闭风潮盛行。 本周,美股卡车自动驾驶上市公司Embark Trucks(EMBK)宣布将裁员70%,同时大幅缩减业务。“痛苦可能还没有结束,”公司首席执行官Alex Rodrigues在给员…...

路径规划 | 图解动态A*(D*)算法(附ROS C++/Python/Matlab仿真)
目录0 专栏介绍1 什么是D*算法?2 D*算法核心概念一览3 D*算法流程图4 步步图解:算法实例5 算法仿真与实现5.1 ROS C实现5.2 Python实现0 专栏介绍 🔥附C/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详…...

GraphCut、最大流最小割定理
G(V,E);V为点集,E为边集; 节点集V中的节点分为: (1)终端节点。不包含图像像素,用S和T表示。S为源点,T为汇点。图像分割中通常用S表示前景目标&a…...

Word文档的密码忘记了怎么办?
Word文档可以设置两种密码,文件的“限制密码”和“打开密码”,今天来分享一下忘记这两种密码可以如何处理。 如果忘记的是Word文档的“限制密码”,文档就无法编辑及更改了,菜单目录中的相关选项也都是灰色状态,无法点…...

Java分布式事务(二)
文章目录🔥分布式事务处理_认识本地事务🔥关系型数据库事务基础_并发事务带来的问题🔥关系型数据库事务基础_MySQL事务隔离级别🔥MySQL事务隔离级别_模拟异常发生之脏读🔥MySQL事务隔离级别_模拟异常发生之不可重复读&…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...