当前位置: 首页 > news >正文

算法练习-二分查找(一)

算法练习-二分查找

1 代码实现

1.1 非递归实现

public int bsearch(int[] a, int n, int value) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;if (a[mid] == value) {return mid;} else if (a[mid] < value) {low = mid + 1} else {high = mid - 1;}}return -1;
}

1.2 递归实现

public int bsearch_r(int[] a, int n, int value) {return bsearch(a, 0, n - 1, value);
}public int bsearch(int[] a, int low, int high, int value) {if (low > high) return -1;int mid = (low + high) / 2;if (a[mid] == value) {return mid;} else if (a[mid] < value) {return bsearch(a, mid + 1, high, value);} else {return bsearch(a, low, mid - 1, value);}
}

2 解题技巧

二分查找的正确姿势:

  • 查找区间永远是闭区间[low, high]
  • 循环条件永远是:low < high
  • 对于low == high的情况,必要的时候特殊处理,在while内部补充退出条件
  • 返回值永远是mid,不是low、high
  • low、high的更新永远是low = mid + 1 和 high = mid - 1
  • 对于非确定性查找,使用前后探测法来确定搜索区间
  • 先处理命中目标,再处理左右半部分查找的情况

3 查找第一个等于x、最后一个等于x的元素

3.1 查找第一个等于x的元素

public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) {if ((mid == 0) || (a[mid - 1] != target)) return mid;else high = mid - 1;} else if (a[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return -1;
}

3.2 查找最后一个等于x的元素

public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) {if ((mid == n - 1) || (a[mid + 1] != target)) return mid;else low = mid + 1;} else if (a[mid] > target) {high = mid - 1;} else {low = mid + 1;}}return -1;
}

4 查找第一个大于等于x,最后一个小于等于x的数

4.1 查找第一个大于等于x的数

public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] >= target) {if ((mid == 0) || (a[mid - 1] < target)) return mid;else high = mid - 1;} else {low = mid + 1;}}return -1;
}

4.2 查找最后一个小于等于x的数

public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if ((mid == n - 1) || (a[mid + 1] > target)) return mid;else low = mid + 1;} else {high = mid - 1;}
}
return -1;
}

5 循环有序数组中查找元素x

public int bsearch(int[] a, int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = low + (high - low) / 2;if (a[mid] == target) return mid;else if (a[low] <= a[mid]) {if (target >= a[low] && target < a[mid]) {high = mid - 1;} else {low = mid + 1;}} else {if (target > a[mid] && target <= a[high]) {low = mid + 1;} else {high = mid - 1;}}}return -1;
}

6 循环有序数组查找最小值

public int bsearch(int[] a, int n) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;if (low == high) return mid;if ((mid != 0 && a[mid] < a[mid - 1]) || (mid == 0 && a[mid] < a[high]) {return mid;} else if (a[mid] > a[high]) {low = mid + 1;} else {high = mid - 1;}}return -1;
}

7 查找峰值

链接:https://leetcode.cn/problems/find-peak-element

7.1 题目

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。
示例 2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;
或者返回索引 5, 其峰值元素为 6。

提示:

1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
对于所有有效的 i 都有 nums[i] != nums[i + 1]

7.2 题解

class Solution {public int findPeakElement(int[] nums) {int n = nums.length;int low = 0;int high = n - 1;while (low <= high) {int mid = (high + low) / 2;if (mid == 0) {if (n == 1) return 0;else if (nums[mid] > nums[mid + 1]) return mid;else low = mid + 1;} else if (mid == n - 1) {if (nums[mid] > nums[mid - 1]) return mid;else high = mid - 1;} else if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) {return mid;} else if (nums[mid] > nums[mid - 1]) {low = mid + 1;} else {high = mid - 1;}}return 0;}
}

8 x的平方根

链接:https://leetcode.cn/problems/sqrtx

8.1 题目

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2
示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。

8.2 题解

class Solution {public int mySqrt(int x) {if (x == 0) return 0;int low = 1;int high = x / 2 + 1;while (low <= high) {int mid = low + (high - low) / 2;long mid2 = (long)mid * mid;if (mid2 <= x) {long mid22 = ((long)mid + 1) * (mid + 1);if (mid22 <= x) {low = mid + 1;} else {return mid;}} else {high = mid - 1; }}return -1;}
}

相关文章:

算法练习-二分查找(一)

算法练习-二分查找 1 代码实现 1.1 非递归实现 public int bsearch(int[] a, int n, int value) {int low 0;int high n - 1;while (low < high) {int mid (low high) / 2;if (a[mid] value) {return mid;} else if (a[mid] < value) {low mid 1} else {high …...

通用业务平台设计(五):预警平台建设

前言 在上家公司&#xff0c;随着业务的不断拓展(从支持单个国家单个主体演变成支持多个国家多个主体)&#xff0c;对预警的诉求越来越紧迫&#xff1b;如何保障业务的稳定性那&#xff1f;预警可以帮我们提前甄别风险&#xff0c;从而让我们可以在风险来临前将其消灭&#xff…...

Windows openssl-1.1.1d vs2017编译

工具&#xff1a; 1. perl&#xff08;https://strawberryperl.com/&#xff09; 2. nasm&#xff08;https://nasm.us/&#xff09; 3. openssl源码&#xff08;https://www.openssl.org/&#xff09; 可以自己去下载 或者我的网盘提供下载&#xff1a; 链接&#xff1a;…...

【深蓝学院】手写VIO第2章--IMU传感器--笔记

0. 内容 1. 旋转运动学 角速度的推导&#xff1a; 左ω∧\omega^{\wedge}ω∧&#xff0c;而ω\omegaω是在z轴方向运动&#xff0c;θ′[0,0,1]T\theta^{\prime}[0,0,1]^Tθ′[0,0,1]T 两边取模后得到结论&#xff1a; 线速度大小半径 * 角速度大小 其中&#xff0c;对旋转矩…...

网络基础(二)之HTTP与HTTPS

应用层 再谈 "协议" 协议是一种 "约定". socket api的接口, 在读写数据时, 都是按 "字符串" 的方式来发送接收的. 如果我们要传输一些"结构化的数据" 怎么办呢? 为什么要转换呢&#xff1f; 如果我们将struct message里面的信息…...

Python每日一练(20230306)

目录 1. 翻转二叉树 ★★ 2. 最长公共前缀 ★★ 3. 2的幂 ★ 1. 翻转二叉树 翻转一棵二叉树。 示例 1&#xff1a; 输入&#xff1a; 4/ \2 7/ \ / \ 1 3 6 9 输出&#xff1a; 4/ \7 2/ \ / \ 9 6 3 1示例 2&#xff1a; 输入&#xff1a; 1…...

C/C++每日一练(20230305)

目录 1. 整数分解 ☆ 2. 二叉树的最小深度 ★★ 3. 找x ★★ 1. 整数分解 输入一个正整数&#xff0c;将其按7进制位分解为各乘式的累加和。 示例 1&#xff1a; 输入&#xff1a;49 输出&#xff1a;497^2示例 2&#xff1a; 输入&#xff1a;720 输出&#xff1a;720…...

SAS字典的应用

数据字典中常用信息检索DICTIONARY.COLUMNS、DICTIONARY.TABLES以及DICTIONARY.MEMBERS等字典表的内容。在编程实践中&#xff0c;如何以SAS字典表来提高效率。 1、DICTIONARY.COLUMNS 对于当前SAS任务的全部数据集&#xff0c;表格DICTIONARY.COLUMNS包含了诸如变量的名称、类…...

Mysql中的函数和触发器

函数函数是什么&#xff1f;多用于查询语句&#xff0c;实现了某种功能&#xff1b;用途与存储过程不同&#xff0c;但语法是类似的&#xff1b;函数语法create function 函数名([参数列表]) returns 数据类型 begin DECLARE 变量&#xff1b; sql 语句; return 值; end; 设置函…...

分布式架构之(Zookeeper原理)

Zookeeper是一个典型的分布式数据一致性的结局方案&#xff0c;分布式应用程序可以基于它实现注入数据发布、订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master选举、分布式锁和分布式队列等功能&#xff0c; Zookeeper可以保证如下分布式一致性特性&#xff1a; 顺…...

Java框架学习 | MyBatis

问题导向学习MyBatis 为什么要有MyBatis框架&#xff1f; 避免Java开发者直接使用 JDBC重复做数据库操作&#xff0c;同时更便捷地实现想要的数据库相关功能&#xff0c;让Java专注于开发业务。 MyBatis框架如何实现该目的&#xff1f; MyBatis是半自动化持久层ORM框架&#x…...

Cookie+Session详解

文章目录批量删除会话技术简介CookieCookie 查看Cookie 的删除Cookie 使用页面获取 cookie 信息cookie 特点Sessionsession 的使用Session 登录权限验证过滤器简介过滤器的使用WebFilter 注解过滤放行登录权限验证批量删除 servlet 类 dao 层 会话技术 简介 在计算机领域…...

CAPL脚本要注意区分elcount和strlen求数组长度的区别,不然要吃大亏

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…...

CSS常用选择器

目录 1.CSS是什么 2.CSS的三种写法 2.1内部样式 2.2内联样式 2.3外部样式 3.CSS选择器 3.1标签选择器 3.2类选择器(更好的选择) 3.3ID选择器 3.4后代选择器 3.5子选择器 3.6并集选择器 3.7伪类选择器(复合选择器的特殊用法) 1.CSS是什么 CSS全称Cascding Style Sh…...

Registry与DGC的攻击利用

0x01 2022-02-03写的一篇文章。 0x02 Registry Registry指的是RMI的注册表&#xff0c;攻击的目标是注册表所在的机器&#xff0c;一般注册表和RMI Server在同一个机器上&#xff0c;特殊情况下也会在不同机器上。 在我们通过LocateRegistry#getRegistry获取到目标开启的注…...

赛道持续降温!又一家自动驾驶公司裁员,市值曾超50亿美元

从去年下半年开始&#xff0c;自动驾驶赛道的裁员、倒闭风潮盛行。 本周&#xff0c;美股卡车自动驾驶上市公司Embark Trucks&#xff08;EMBK&#xff09;宣布将裁员70%&#xff0c;同时大幅缩减业务。“痛苦可能还没有结束&#xff0c;”公司首席执行官Alex Rodrigues在给员…...

路径规划 | 图解动态A*(D*)算法(附ROS C++/Python/Matlab仿真)

目录0 专栏介绍1 什么是D*算法&#xff1f;2 D*算法核心概念一览3 D*算法流程图4 步步图解&#xff1a;算法实例5 算法仿真与实现5.1 ROS C实现5.2 Python实现0 专栏介绍 &#x1f525;附C/Python/Matlab全套代码&#x1f525;课程设计、毕业设计、创新竞赛必备&#xff01;详…...

GraphCut、最大流最小割定理

G&#xff08;V&#xff0c;E&#xff09;&#xff1b;V为点集&#xff0c;E为边集&#xff1b; 节点集V中的节点分为&#xff1a; &#xff08;1&#xff09;终端节点。不包含图像像素&#xff0c;用S和T表示。S为源点&#xff0c;T为汇点。图像分割中通常用S表示前景目标&a…...

Word文档的密码忘记了怎么办?

Word文档可以设置两种密码&#xff0c;文件的“限制密码”和“打开密码”&#xff0c;今天来分享一下忘记这两种密码可以如何处理。 如果忘记的是Word文档的“限制密码”&#xff0c;文档就无法编辑及更改了&#xff0c;菜单目录中的相关选项也都是灰色状态&#xff0c;无法点…...

Java分布式事务(二)

文章目录&#x1f525;分布式事务处理_认识本地事务&#x1f525;关系型数据库事务基础_并发事务带来的问题&#x1f525;关系型数据库事务基础_MySQL事务隔离级别&#x1f525;MySQL事务隔离级别_模拟异常发生之脏读&#x1f525;MySQL事务隔离级别_模拟异常发生之不可重复读&…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...