当前位置: 首页 > news >正文

算法沉淀——动态规划之其它背包问题与卡特兰数(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之其它背包问题与卡特兰数

  • 二维费用的背包问题
    • 01.一和零
    • 02.盈利计划
  • 似包非包
    • 组合总和 Ⅳ
  • 卡特兰数
    • 不同的二叉搜索树

二维费用的背包问题

01.一和零

题目链接:https://leetcode.cn/problems/ones-and-zeroes/

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0''1' 组成
  • 1 <= m, n <= 100

思路

问题转化为二维费用的01背包问题:

  1. 状态表示:
    • dp[i][j][k] 表示从前 i 个字符串中挑选,字符 0 的个数不超过 j,字符 1 的个数不超过 k,所有的选法中,最大的长度。
  2. 状态转移方程:
    • 根据最后一步的状况,分两种情况讨论:
      • 不选第 i 个字符串:相当于去前 i - 1 个字符串中挑选,并且字符 0 的个数不超过 j,字符 1 的个数不超过 k。此时的最大长度为 dp[i][j][k] = dp[i - 1][j][k]
      • 选择第 i 个字符串:接下来在前 i - 1 个字符串中挑选,字符 0 的个数不超过 j - a,字符 1 的个数不超过 k - b 的最大长度,然后在这个长度后面加上字符串 i。此时 dp[i][j][k] = dp[i - 1][j - a][k - b] + 1。需要特判这种状态是否存在。
    • 综上,状态转移方程为:dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1)
  3. 初始化:
    • 当没有字符串的时候,没有长度,因此初始化为 0
  4. 填表顺序:
    • 保证第一维的循环从小到大即可。
  5. 返回值:
    • 根据状态表示,返回 dp[l][m][n]

代码

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {int l=strs.size();vector<vector<vector<int>>> dp(l+1,vector<vector<int>>(m+1,vector<int>(n+1)));for(int i=1;i<=l;i++){int a=0,b=0;for(char ch:strs[i-1])if(ch=='0') a++;else b++;for(int j=m;j>=0;j--)for(int k=n;k>=0;k--){dp[i][j][k]=dp[i-1][j][k];if(j>=a&&k>=b) dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-a][k-b]+1);}}return dp[l][m][n];}
};

02.盈利计划

题目链接:https://leetcode.cn/problems/profitable-schemes/

集团里有 n 名员工,他们可以完成各种各样的工作创造利润。

i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。

工作的任何至少产生 minProfit 利润的子集称为 盈利计划 。并且工作的成员总数最多为 n

有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7 的值

示例 1:

输入:n = 5, minProfit = 3, group = [2,2], profit = [2,3]
输出:2
解释:至少产生 3 的利润,该集团可以完成工作 0 和工作 1 ,或仅完成工作 1 。
总的来说,有两种计划。

示例 2:

输入:n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:至少产生 5 的利润,只要完成其中一种工作就行,所以该集团可以完成任何工作。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。

提示:

  • 1 <= n <= 100
  • 0 <= minProfit <= 100
  • 1 <= group.length <= 100
  • 1 <= group[i] <= 100
  • profit.length == group.length
  • 0 <= profit[i] <= 100

思路

  1. 状态表示:
    • dp[i][j][k] 表示从前 i 个计划中挑选,总人数不超过 j,总利润至少为 k,有多少种选法。
  2. 状态转移方程:
    • 根据最后一位的元素,有两种选择策略:
      • 不选第 i 位置的计划:此时只能在前 i - 1 个计划中挑选,总人数不超过 j,总利润至少为 k。此时有 dp[i - 1][j][k] 种选法。
      • 选择第 i 位置的计划:在前 i - 1 个计划中挑选的限制变成了,总人数不超过 j - g[i],总利润至少为 max(0, k - p[i])。此时有 dp[i - 1][j - g[i]][max(0, k - p[i])] 种选法。
    • 注意特殊情况:
      • 如果 j - g[i] < 0,说明人数过多,状态不合法,舍去。
      • 对于 k - p[i] < 0,说明利润太高,但问题要求至少为 k,因此将其取 max(0, k - p[i])
    • 综上,状态转移方程为:dp[i][j][k] = dp[i - 1][j][k] + dp[i - 1][j - g[i]][max(0, k - p[i])]
  3. 初始化:
    • 当没有任务时,利润为 0。在这种情况下,无论人数限制为多少,都能找到一个「空集」的方案。因此初始化 dp[0][j][0]1,其中 0 <= j <= n
  4. 填表顺序:
    • 根据状态转移方程,保证 i 从小到大即可。
  5. 返回值:
    • 根据状态表示,返回 dp[l][m][n],其中 l 表示计划数组的长度。

代码

class Solution {const int MOD=1e9+7;
public:int profitableSchemes(int n, int m, vector<int>& group, vector<int>& profit) {int l = group.size();vector<vector<vector<int>>> dp(l+1,vector<vector<int>>(n+1,vector<int>(m+1)));for(int j=0;j<=n;j++) dp[0][j][0]=1;for(int i=1;i<=l;i++)for(int j=0;j<=n;j++)for(int k=0;k<=m;k++){dp[i][j][k]=dp[i-1][j][k];if(j>=group[i-1]) dp[i][j][k]+=dp[i-1][j-group[i-1]][max(0,k-profit[i-1])];dp[i][j][k]%=MOD;}return dp[l][n][m];}   
};

似包非包

组合总和 Ⅳ

题目链接:https://leetcode.cn/problems/combination-sum-iv/

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

输入:nums = [9], target = 3
输出:0

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • nums 中的所有元素 互不相同
  • 1 <= target <= 1000

思路

注意这里题目意思容易混淆概念,其实这里是一个排列问题而并非组合问题,所以应该是普通的动态规划问题

  1. 状态表示:
    • dp[i] 表示总和为 i 时,一共有多少种排列方案。
  2. 状态转移方程:
    • 对于 dp[i],根据最后一个位置划分,选择数组中的任意一个数 nums[j],其中 0 <= j <= n - 1
    • nums[j] <= i 时,排列数等于先找到 i - nums[j] 的方案数,然后在每一个方案后面加上一个数字 nums[j]
    • 因为有很多个 j 符合情况,状态转移方程为:dp[i] += dp[i - nums[j]],其中 0 <= j <= n - 1
  3. 初始化:
    • 当和为 0 时,我们可以什么都不选,即「空集」一种方案,因此 dp[0] = 1
  4. 填表顺序:
    • 根据状态转移方程,从左往右填表。
  5. 返回值:
    • 根据状态表示,返回 dp[target] 的值。

代码

class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<double> dp(target+1);dp[0]=1;for(int i=1;i<=target;i++)for(int& x:nums)if(x<=i) dp[i]+=dp[i-x];return dp[target];}
};

卡特兰数

不同的二叉搜索树

题目链接:https://leetcode.cn/problems/unique-binary-search-trees/

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示:

  • 1 <= n <= 19

思路

  1. 状态表示:
    • dp[i] 表示当结点数量为 i 个时,一共有多少颗 BST。
  2. 状态转移方程:
    • 对于 dp[i],选择每一个结点 j 作为头结点,分析不同头结点的 BST 数量。
    • 根据 BST 的定义,j 号结点的左子树的结点编号在 [1, j-1] 之间,有 j-1 个结点,右子树的结点编号在 [j+1, i] 之间,有 i-j 个结点。
    • 因此,j 号结点作为头结点的 BST 种类数量为 dp[j-1] * dp[i-j]
    • 综合每一个可能的头结点,状态转移方程为:dp[i] += dp[j-1] * dp[i-j],其中 1 <= j <= i
  3. 初始化:
    • dp[0] 表示空树,也是一颗二叉搜索树,因此 dp[0] = 1
    • 针对 i 从 1 开始的情况,需要通过 dp[j-1] * dp[i-j] 来计算。
  4. 填表顺序:
    • 从左往右填表,保证每一步都有所依赖的子问题的解。
  5. 返回值:
    • 返回 dp[n] 的值,表示结点数量为 n 时的 BST 种类数量。

代码

class Solution {
public:int numTrees(int n) {vector<int> dp(n+1);dp[0]=1;for(int i=1;i<=n;i++)for(int j=1;j<=i;j++)dp[i]+=dp[j-1]*dp[i-j];return dp[n];}
};

相关文章:

算法沉淀——动态规划之其它背包问题与卡特兰数(leetcode真题剖析)

算法沉淀——动态规划之其它背包问题与卡特兰数 二维费用的背包问题01.一和零02.盈利计划 似包非包组合总和 Ⅳ 卡特兰数不同的二叉搜索树 二维费用的背包问题 01.一和零 题目链接&#xff1a;https://leetcode.cn/problems/ones-and-zeroes/ 给你一个二进制字符串数组 strs…...

selenium中ChromeDriver配置,一把过,并且教你伪装

最近正值毕业季&#xff0c;我之前不是写了个问卷星代码嘛&#xff0c;昨晚上有人凌晨1点加我&#xff0c;问我相关内容。 由于我之前C盘重装了一下&#xff0c;导致我很多东西空有其表&#xff0c;实际不能用&#xff0c;借此机会&#xff0c;向大家编写ChromeDriver配置&…...

vue3 + vite 项目可以使用纯Js开发吗?

答案&#xff1a;可以 创建项目&#xff1a; 按照链接参考或者按官方&#xff1a; webstorm 创建vue3 vite 项目-CSDN博客 项目目录 tsconfig.json 配置允许js allowJs指定是否编译js文件&#xff0c;在任意文件当中,如果我们模块使用js写的&#xff0c;那么我们需要 将all…...

Java EE之线程安全问题

一.啥是线程安全问题 有些代码&#xff0c;在单个线程执行时完全正确&#xff0c;但同样的代码让多个线程同时执行&#xff0c;就会出现bug。例如以下代码&#xff1a; 给定一个变量count&#xff0c;让线程t1 t2分别自增5000次&#xff0c;然后进行打印&#xff0c;按理说co…...

掌握Nodejs高级图片压缩技巧提升web优化

掌握Nodejs高级图片压缩技巧提升web优化 在当今的数字时代,图像在网络开发中发挥着至关重要的作用。它们增强视觉吸引力、传达信息并吸引用户。然而,高质量的图像通常有一个显着的缺点——较大的文件大小会减慢网页加载时间。为了应对这一挑战并确保快速加载网站,掌握 Node…...

C++初阶 类(上)

目录 1. 什么是类 2. 如何定义出一个类 3. 类的访问限定符 4. 类的作用域 5. 类的实例化 6. 类的大小 7. this指针 1.this指针的引出 2. this指针的特性 8. 面试题 1. 什么是类 在C语言中&#xff0c;不同类型的数据集合体是结构体。为了方便管理结构体&#xff0c;我…...

图片速览 BitNet: 1-bit LLM

输入数据 模型使用absmax 量化方法进行b比特量化,将输入量化到 [ − Q b , Q b ] ( Q b 2 b − 1 ) \left[-Q_{b},Q_{b}\right](Q_{b}2^{b-1}) [−Qb​,Qb​](Qb​2b−1) x ~ Q u a n t ( x ) C l i p ( x Q b γ , − Q b ϵ , Q b − ϵ ) , Clip ⁡ ( x , a , b ) ma…...

金融基础——拨备前利润和拨备后利润介绍

一、简介 拨备前利润&#xff08;PreProvision Operating Profit&#xff0c;也就是PPOP&#xff09;和拨备后利润的主要区别在于是否扣除减值准备金、是否遵循保守性原则以及显示的利润数值不同。 拨备前利润。指在计算利润时没有扣除减值准备金的利润&#xff0c;它等于税前…...

网络编程作业day7

作业项目&#xff1a;基于UDP的聊天室 服务器代码&#xff1a; #include <myhead.h>//定义客户信息结构体 typedef struct magtye {char type; //消息类型char name[100]; //客户姓名char text[1024]; //客户发送聊天信息 }msg_t;//定义结构体存储…...

【Vision Pro杀手级应用】3D音乐会/演唱会,非VR视频播放的形式,而是实实在在的明星“全息”形象,在你的面前表演

核心内容形式:体积视频 参考对标案例深度解读: 体积视频,这一全新的内容形式,正在引领我们进入一个前所未有的四维体验时代。它将传统的演艺形式推向了新的高度,让我们能够更加深入地沉浸在虚拟世界中,感受前所未有的视听盛宴。 在这一领域,有一个引人注目的案例,那…...

变频器学习

西门子变频器 SINAMICS V20 入门级变频器 SINAMICS G120C...

Linux Ubuntu系统安装MySQL并实现公网连接本地数据库【内网穿透】

文章目录 前言1 .安装Docker2. 使用Docker拉取MySQL镜像3. 创建并启动MySQL容器4. 本地连接测试4.1 安装MySQL图形化界面工具4.2 使用MySQL Workbench连接测试 5. 公网远程访问本地MySQL5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定TCP地址远程访问 前言 本文主…...

0048__Unix传奇

Unix传奇 &#xff08;上篇&#xff09;_unix传奇(上篇)-CSDN博客 Unix传奇 &#xff08;下篇&#xff09;-CSDN博客 Unix现状与未来——CSDN对我的采访_nuix邮件系统行业地位-CSDN博客...

蓝桥杯-排序

数组排序 Arrays.sort(int[] a) 这种形式是对一个数组的所有元素进行排序&#xff0c;并且时按从小到大的顺序。 package Work;import java.util.*;public class Imcomplete {public static void main(String args[]) {int arr[]new int [] {1,324,4,5,7,2};Arrays.sort(arr)…...

计算机设计大赛 深度学习的视频多目标跟踪实现

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的视频多目标跟踪实现 …...

高性能JSON框架之FastJson的简单使用

高性能JSON框架之FastJson的简单使用、 1.前言 1.1.FastJson的介绍: JSON协议使用方便&#xff0c;越来越流行,JSON的处理器有很多,这里我介绍一下FastJson,FastJson是阿里的开源框架,被不少企业使用,是一个极其优秀的Json框架,Github地址: FastJson 1.2.FastJson的特点: 1.F…...

★判断素数的几种方法(由易到难,由慢到快)

素数的定义&#xff1a; 素数&#xff0c;又称为质数&#xff0c;指的是“大于1的整数中&#xff0c;只能被1和这个数本身整除的数”。换句话说&#xff0c;素数是只有两个正约数&#xff08;1和本身&#xff09;的自然数。素数在数论中有着重要的地位&#xff0c;且素数的个数…...

vue svelte solid 虚拟滚动性能对比

前言 由于svelte solid 两大无虚拟DOM框架&#xff0c;由于其性能好&#xff0c;在前端越来越有影响力。 因此本次想要验证&#xff0c;这三个框架关于实现表格虚拟滚动的性能。 比较版本 vue3.4.21svelte4.2.12solid-js1.8.15 比较代码 这里使用了我的 stk-table-vue(np…...

IDEA中新增文件,弹出框提示是否添加到Git点错了,怎么重新设置?

打开一个配置了Git的项目&#xff0c;新增一个文件&#xff0c;会弹出下面这个框。提示是否将新增的文件交给Git管理。 一般来说&#xff0c;会选择ADD&#xff0c;并勾选Dont ask agin&#xff0c;添加并不再询问。如果不小心点错了&#xff0c;可在IDEA中重新设置&#xff08…...

LV15 day5 字符设备驱动读写操作实现

一、读操作实现 ssize_t xxx_read(struct file *filp, char __user *pbuf, size_t count, loff_t *ppos); 完成功能&#xff1a;读取设备产生的数据 参数&#xff1a; filp&#xff1a;指向open产生的struct file类型的对象&#xff0c;表示本次read对应的那次open pbuf&#…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...