当前位置: 首页 > news >正文

灵魂指针,教给(一)

欢迎来到白刘的领域   Miracle_86.-CSDN博客

系列专栏  C语言知识

先赞后看,已成习惯

   创作不易,多多支持!

一、内存和地址

1.1 内存

在介绍知识之前,先来想一个生活中的小栗子:

假如把你放在一个有100间屋子的酒店里,但是没有门牌号,你想让你的好朋友来找你玩,这种情况好朋友就得一个房间一个房间去找,非常的麻烦。但是如果有了门牌号,我们就可以告诉好朋友,他就可以迅速精准地找到你所在的房间。

 把上述的栗子,映射到计算机上,就成为了我们今天所介绍的内存。

我们知道,在计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也是会放回内存中。我们在买电脑的时候,内存会有8GB/16GB/32GB等等,这些内存是如何高效管理的呢?

事实上,也是通过把内存划分为一个个的小单元格,每个单元格的大小取1个字节。

bit - ⽐特位
byte - 字节
KB
MB
GB
TB
PB
1byte = 8bit
1KB = 1024byte
1MB = 1024KB
1GB = 1024MB
1TB = 1024GB
1PB = 1024TB
其中,每个内存单元,相当于⼀个学生宿舍,⼀个⼈字节空间⾥⾯能放8个比特位,就好⽐同学们住的⼋⼈间,每个⼈是⼀个⽐特位。
每个内存单元也都有⼀个编号(这个编号就相当 于宿舍房间的门牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。

生活中,我们把门牌号叫作地址,计算机中也不例外,我们刚说了内存就像宿舍,就像屋子,那它的编号(门牌号)就是它的地址。而在C语言里,我们给它取了个新的名字——指针。

所以我们可以理解为:

内存单元的编号 == 地址 == 指针

1.2 如何理解编址

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样) 。 

计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。 

钢琴、吉他上⾯没有写上“都瑞咪发嗦啦”这样的信息,但演奏者照样能够准确找到每⼀个琴弦的每⼀个位置,这是为何?因为制造商已经在乐器硬件层⾯上设计好了,并且所有的演奏者都知道。本质是⼀种约定出来的共识! 

硬件编址亦是如此。 

⾸先,必须理解,计算机内是有很多的硬件单元,⽽硬件单元是要互相协同⼯作的。所谓的协同,⾄少相互之间要能够进⾏数据传递。但是硬件与硬件之间是互相独⽴的,那么如何通信呢?答案很简单,⽤"线"连起来。⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。不过,我们今天关⼼⼀组线,叫做地址总线 

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表⽰0,1【电脉冲有⽆】,那么
⼀根线,就能表⽰2种含义,2根线就能表⽰4种含义,依次类推。32根地址线,就能表⽰2^32种含
义,每⼀种含义都代表⼀个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传⼊CPU内寄存器。

二、指针变量和地址

2.1 取地址操作符(&)

我们在操作符那里挖了个坑,详见:

武器大师——操作符详解(下)-CSDN博客

理解了内存与指针的关系,我们再回到C语言,在C语言中创建变量的过程其实本质就是向内存申请空间,eg:

#include <stdio.h>
int main()
{int a = 10;return 0;
}

上述代码,我们创建了整型变量a,我们知道整型是4个字节,所以向内存申请了这四个空间:

0x006FFD70
0x006FFD71
0x006FFD72
0x006FFD73

我们如何得到a的地址呢?这里用到了取地址操作符(&),长得像我们之前学过的按位与。

#include <stdio.h>
int main()
{int a = 10;&a;//取出a的地址printf("%p\n", &a);return 0;
}

虽然我们整型占用四个字节,但是实际上我们只需要知道第一个字节的地址,就可以顺藤摸瓜获取接下来的地址。

2.2 指针变量与解引用操作符(*)

2.2.1 指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FFD70,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。eg:

#include <stdio.h>
int main()
{int a = 10;int* pa = &a;//取出a的地址并存储到指针变量pa中return 0;
}

指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。

2.2.2 如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?  

int a = 10;
int * pa = &a;
这⾥pa左边写的是 int* * 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int)
类型的对象。
2.2.3 解引用操作符( * )

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢? 

在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。 

C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。

#include <stdio.h>
int main()
{int a = 100;int* pa = &a;*pa = 0;return 0;
}

 上述代码第7行就使用了解引用,*pa其实就是表示的指针指向的对象,也就是变量a,这步操作相当于把a的值改成了0。有人会问道:“那我直接改a=0不是更简单嘛,为什么非要写一个指针呢?”,其实这样对a多了一种途径,会让你的代码更有灵活性和可操作性。

2.3 指针变量的大小

这里先说结论:32位处理器(x86)下是4个字节,64位处理器(x64)下是8个字节。

前⾯的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。  

如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变量的⼤⼩就是8个字节。 

#include <stdio.h>
//指针变量的⼤⼩取决于地址的⼤⼩
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{printf("%zd\n", sizeof(char *));printf("%zd\n", sizeof(short *));printf("%zd\n", sizeof(int *));printf("%zd\n", sizeof(double *));return 0;
}

x86环境下结果:

x64环境下结果:

注意指针变量的大小跟类型无关!只要是指针类型的变量,在相同的平台下,大小是相同的。

三、指针变量类型的意义

既然我们前面说了,指针变量的大小在相同的平台下是相同的,那不同类型的指针变量有什么意义呢?

3.1 指针的解引用

我们来看下面两段代码:

//代码1
#include <stdio.h>
int main()
{int n = 0x11223344;int *pi = &n; *pi = 0; return 0;
}
//代码2
#include <stdio.h>
int main()
{int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0;
}

经过调试我们可以看到,代码1将n的4个字节全改为0,而代码2只改了一个字节。

结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

3.2 指针+-整数

#include <stdio.h>
int main()
{int n = 10;char *pc = (char*)&n;int *pi = &n;printf("%p\n", &n);printf("%p\n", pc);printf("%p\n", pc+1);printf("%p\n", pi);printf("%p\n", pi+1);return 0;
}

 我们直接看上述代码以及结果:

我们可以看出,char*类型的指针变量+1的话,跳过了1个字节,而int*类型的跳过了4个字节。这就是指针类型导致的变化。

结论:指针的类型决定了指针向前或向后走的距离有多大

 3.3 void*指针

这是一种特殊类型的指针,void 译为无效、空的,可以理解为无具体类型的指针或者泛型指针,我们在前面学过void类型的函数。它可以接收任意类型的地址,但是我们说人无完人,它也有局限性的,它不可以进行+-以及解引用的操作。

来举个例子:

#include <stdio.h>
int main()
{int a = 10;int* pa = &a;char* pc = &a;return 0;
}

在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题。 

 使用void*接收:

#include <stdio.h>
int main()
{int a = 10;void* pa = &a;void* pc = &a;*pa = 10;*pc = 0;return 0;
}

一般void*类型的指针是用在函数参数的部分的,我们以后也会讲到(又挖个坑 *^▽^* )。

四、const修饰指针

4.1 const修饰变量

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

 

#include <stdio.h>
int main()
{int m = 0;m = 20;//m是可以修改的const int n = 0;n = 20;//n是不能被修改的return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。 

但是我们如果绕过n,使用n的地址,去修改n,就可以做到了:

#include <stdio.h>
int main()
{const int n = 0;printf("n = %d\n", n);int*p = &n;*p = 20;printf("n = %d\n", n);return 0;
}

来看运行结果: 

 

我们可以看到这⾥⼀个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

4.2 const修饰指针变量

 这里讲个小故事,说有一对小情侣在逛街,女生想吃凉皮,一碗凉皮十块钱,但是男生兜里只有十块钱,女生看了看男生,男生说凉皮一看就不好吃,女生说你要是不想买,我就换男朋友,男生着急了,一狠心说了句,买可以但是你不可以换男朋友,女生点了点头,最后他们幸福的生活在了一起。

这个故事其实就类似于const修饰指针变量。

int *const p;
int const* p;

我们把p看成钱,第一行代码就是,const放在右边,修饰限制指针p所指向的值,这个值不可以更改,就像刚开始,男生不想动自己仅剩的钱。

第二行,const放在左边,就可以看成,男生不想让女生换对象,const修饰限制p指向的对象不可以变。

const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。
const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

五、指针运算

指针运算一共分为三种:指针+-运算、指针-指针、指针的关系运算。

5.1 指针+-整数

由于数组在内存中的存放是连续的,我们根据这一特性,只要知道第一个元素的地址,就可以顺藤摸瓜得到任意想要的元素,这就是指针的灵活性所在。

#include <stdio.h>
//指针+- 整数
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int i = 0;int sz = sizeof(arr)/sizeof(arr[0]);for(i=0; i<sz; i++){printf("%d ", *(p+i));//p+i 这⾥就是指针+整数}return 0;
}

这里主要看的是p所指向的对象类型,第6行写道,p指向的是arr[0],类型是int,所以+1会跳过4个字节,找到arr[1]。

5.2 指针-指针

//指针-指针
#include <stdio.h>
int my_strlen(char *s)
{char *p = s;while(*p != '\0' )p++;return p-s;
}
int main()
{printf("%d\n", my_strlen("abc"));return 0;
}

这段代码是什么意思呢,这段代码是模拟的strlen函数,首先传进来字符串的首地址s,然后char了个*p指向s所指的地址,也就是p和s都指向一个地方,之后,p开始动了,当p指向的是'\0'的时候停止,用p-s就是p动了几下,也就是两个指针之间有多少个元素。

5.3 指针的关系运算

//指针的关系运算
#include <stdio.h>
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int i = 0;int sz = sizeof(arr)/sizeof(arr[0]);while(p<arr+sz) //指针的⼤⼩⽐较{printf("%d ", *p);p++;}return 0;
}

这段代码就诠释了指针的大小比较。p<arr+sz(这里补充一点,数组名其实也是个指针,我们后面也会讲这一点的,这里先铺垫一下),p指向的arr的首元素,arr+sz是指向的数组末端(不是最后一个元素,而是最后一个元素的后面)。p++会慢慢让p接近这个地址,也就构成了数组遍历。

六、野指针

什么叫野指针呢,你可以理解为,很野的指针,我们说一个人比较野,因为他很放浪不羁、不受拘束。野指针也是如此,它是瞎乱指的,随机的,没有限制的。

6.1 野指针成因

1.指针初始化
#include <stdio.h>
int main()
{ int *p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;
}
2.指针越界访问
#include <stdio.h>
int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i=0; i<=11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}
3.指针指向的空间被释放
#include <stdio.h>
int* test()
{int n = 100;return &n;
}
int main()
{int*p = test();printf("%d\n", *p);return 0;
}

6.2 指针初始化

为了避免野指针瞎乱指,我们提供了NULL这个宏定义,它的值为0,但是我们不可以访问0的地址。初始化如下:

#include <stdio.h>
int main()
{int num = 10;int*p1 = &num;int*p2 = NULL;return 0;
}
6.2.1小心指针越界
⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。
6.2.2指针变量不再使用时,及时置NULL,指针使用之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,同时使⽤指针之前可以判断指针是否为NULL。

int main()
{int arr[10] = {1,2,3,4,5,67,7,8,9,10};int *p = &arr[0];for(i=0; i<10; i++){*(p++) = i;}//此时p已经越界了,可以把p置为NULLp = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤//...p = &arr[0];//重新让p获得地址if(p != NULL) //判断{//...}return 0;
}
 6.2.3避免返回局部变量的地址

如造成野指针的第三个例子。

七、assert断言

assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报
错终⽌运⾏。这个宏常常被称为“断⾔”。
assert(p != NULL);

上⾯代码在程序运⾏到这⼀⾏语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运⾏,否则就会终⽌运⾏,并且给出报错信息提⽰。

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣
任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误
stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。
assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和
出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问
题,不需要再做断⾔,就在 #include <assert.h> 语句的前⾯,定义⼀个宏 NDEBUG
#define NDEBUG
#include <assert.h>
然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移
除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert()
句。
assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。
⼀般我们可以在 Debug 中使⽤,在 Release 版本中选择禁⽤ assert 就⾏,在 VS 这样的集成开
发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,
Release 版本不影响⽤⼾使⽤时程序的效率。

八、传值调用和传址调用

8.1 strlen的模拟实现

库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:
size_t strlen ( const char * str );
参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停⽌。
代码如下:
int my_strlen(const char * str)
{int count = 0;assert(str);while(*str){count++;str++;}return count;
}
int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}

8.2 传值调用和传址调用

学习指针的⽬的是使⽤指针解决问题,那什么问题,⾮指针不可呢?
例如:写⼀个函数,交换两个整型变量的值

 我们可能会写出这段代码:

#include <stdio.h>
void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

但是来看运行结果:

这是为什么呢?我们来调试一下。

我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调⽤
Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不⼀样,y的地址和b的地址不⼀样,相当于x和y是独⽴的空间,那么在Swap1函数内部交换x和y的值,⾃然不会影响a和b,当Swap1函数调⽤结束后回到main函数,a和b的没法交换。Swap1函数在使⽤的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这种叫传值调用
结论:实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实 参。

那我们怎么解决这个问题呢?

我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么就可以使⽤指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数⾥边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

 

#include <stdio.h>void Swap2(int*px, int*py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

来看运行结果: 

 

我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传递给了函数,这种函数调⽤⽅式叫:传址调用
传址调⽤,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改主调函数中的变量的值,就需要传址调⽤。

相关文章:

灵魂指针,教给(一)

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 一、内存和地址 1.1 内存 在介绍知识之前&#xff0c;先来想一个生活中的小栗子&#xff1a; 假如把你放在一个有100间屋子的酒店…...

Linux 开发工具 yum、git、gdb

目录 一、yum 1、软件包 2、rzsz 3、注意事项 4、查看软件包 5、安装软件 6、卸载软件 二、git操作 1、克隆三板斧 2、第一次使用会出现以下情况&#xff1a; 未配置用户名和邮箱&#xff1a; push后弹出提示 三、gdb使用 1、背景 2、使用方法 例一&#xff1a…...

Markdown

这里写自定义目录标题 欢迎使用Markdown编辑器 新的改变 功能快捷键 合理的创建标题&#xff0c;有助于目录的生成 如何改变文本的样式 插入链接与图片 如何插入一段漂亮的代码片 生成一个适合你的列表 创建一个表格 设定内容居中、居左、居右 SmartyPants 创建一个自定义列表 …...

【Oracle】oracle中sql给表新增字段并添加注释说明;mysql新增、修改字段

oracle中sql给表新增字段并添加注释说明 ALTER TABLE 表名 ADD 字段名 类型 COMMENT ON COLUMN 表面.字段名 IS ‘注释内容’ ALTER TABLE GROUP ADD T NUMBER(18) COMMENT ON COLUMN GROUP.T IS ‘ID’ mysql新增、修改字段、已有字段增加默认值 ALTER TABLE 表名 ADD COL…...

【汇总】pytest简易教程

pytest作为python技术栈里面主流、火热的技术&#xff0c;非常有必要好好学一下&#xff0c;因为工作和面试都能用上&#xff1b; 它不仅简单易用&#xff0c;还很强大灵活&#xff0c;重点掌握fixture、parametrize参数化、allure-pytest插件等&#xff0c;这些在后续自动化框…...

openssl调试记录

openssl不能直接解密16进制密文&#xff0c;需要把密文转化成base64格式才能解密 调试记录如下&#xff1a;...

3.7练习题解

一共五道题&#xff1a; 1. PERKET&#xff1a; 观察容易发现n的值很小&#xff0c;所以我们可以考虑使用dfs的方法进行解答&#xff0c;首先我们可以考虑一共有n种配料&#xff0c;那么我们就可以考虑到可以选择1到n种配料数目&#xff0c;然后基于这个思路我们再对其进行判断…...

MQ的消费模式-消息是推还是拉

文章目录 概述RocketMQ默认pushRabbitMQ默认pushKafka默认拉PullActiveMQ默认push 概述 MQ的消费模式可以大致分为两种&#xff0c;一种是推Push&#xff0c;一种是拉Pull Push是服务端主动推送消息给客户端&#xff0c;Pull是客户端需要主动到服务端轮询获取数据。 推优点是及…...

一个平台满足你对测试工具的所有需求

背景 目前&#xff0c;测试人员普遍使用的测试工具有Postman、JMeter等&#xff0c;但这些工具都存在一定的局限性。例如&#xff0c;Postman缺少对API性能测试方面的支持&#xff0c;而JMeter则缺乏一个整合测试报告、测试脚本的统一管理系统以及UI测试功能。 RunnerGo是什么…...

【C语言】【字符串函数】【超详解】【上】!!!

前言&#xff1a; 在学习C语言的过程中&#xff0c;字符串、字符数组等对新手来说总是会有疏忽&#xff0c;在已有的库函数中&#xff0c;我们平时用到最多的就是关于字符串的函数&#xff0c;今天我们就来详细学习字符串函数的相关内容。 下面我们就开始讲解字符串函数&#x…...

算法沉淀——动态规划之其它背包问题与卡特兰数(leetcode真题剖析)

算法沉淀——动态规划之其它背包问题与卡特兰数 二维费用的背包问题01.一和零02.盈利计划 似包非包组合总和 Ⅳ 卡特兰数不同的二叉搜索树 二维费用的背包问题 01.一和零 题目链接&#xff1a;https://leetcode.cn/problems/ones-and-zeroes/ 给你一个二进制字符串数组 strs…...

selenium中ChromeDriver配置,一把过,并且教你伪装

最近正值毕业季&#xff0c;我之前不是写了个问卷星代码嘛&#xff0c;昨晚上有人凌晨1点加我&#xff0c;问我相关内容。 由于我之前C盘重装了一下&#xff0c;导致我很多东西空有其表&#xff0c;实际不能用&#xff0c;借此机会&#xff0c;向大家编写ChromeDriver配置&…...

vue3 + vite 项目可以使用纯Js开发吗?

答案&#xff1a;可以 创建项目&#xff1a; 按照链接参考或者按官方&#xff1a; webstorm 创建vue3 vite 项目-CSDN博客 项目目录 tsconfig.json 配置允许js allowJs指定是否编译js文件&#xff0c;在任意文件当中,如果我们模块使用js写的&#xff0c;那么我们需要 将all…...

Java EE之线程安全问题

一.啥是线程安全问题 有些代码&#xff0c;在单个线程执行时完全正确&#xff0c;但同样的代码让多个线程同时执行&#xff0c;就会出现bug。例如以下代码&#xff1a; 给定一个变量count&#xff0c;让线程t1 t2分别自增5000次&#xff0c;然后进行打印&#xff0c;按理说co…...

掌握Nodejs高级图片压缩技巧提升web优化

掌握Nodejs高级图片压缩技巧提升web优化 在当今的数字时代,图像在网络开发中发挥着至关重要的作用。它们增强视觉吸引力、传达信息并吸引用户。然而,高质量的图像通常有一个显着的缺点——较大的文件大小会减慢网页加载时间。为了应对这一挑战并确保快速加载网站,掌握 Node…...

C++初阶 类(上)

目录 1. 什么是类 2. 如何定义出一个类 3. 类的访问限定符 4. 类的作用域 5. 类的实例化 6. 类的大小 7. this指针 1.this指针的引出 2. this指针的特性 8. 面试题 1. 什么是类 在C语言中&#xff0c;不同类型的数据集合体是结构体。为了方便管理结构体&#xff0c;我…...

图片速览 BitNet: 1-bit LLM

输入数据 模型使用absmax 量化方法进行b比特量化,将输入量化到 [ − Q b , Q b ] ( Q b 2 b − 1 ) \left[-Q_{b},Q_{b}\right](Q_{b}2^{b-1}) [−Qb​,Qb​](Qb​2b−1) x ~ Q u a n t ( x ) C l i p ( x Q b γ , − Q b ϵ , Q b − ϵ ) , Clip ⁡ ( x , a , b ) ma…...

金融基础——拨备前利润和拨备后利润介绍

一、简介 拨备前利润&#xff08;PreProvision Operating Profit&#xff0c;也就是PPOP&#xff09;和拨备后利润的主要区别在于是否扣除减值准备金、是否遵循保守性原则以及显示的利润数值不同。 拨备前利润。指在计算利润时没有扣除减值准备金的利润&#xff0c;它等于税前…...

网络编程作业day7

作业项目&#xff1a;基于UDP的聊天室 服务器代码&#xff1a; #include <myhead.h>//定义客户信息结构体 typedef struct magtye {char type; //消息类型char name[100]; //客户姓名char text[1024]; //客户发送聊天信息 }msg_t;//定义结构体存储…...

【Vision Pro杀手级应用】3D音乐会/演唱会,非VR视频播放的形式,而是实实在在的明星“全息”形象,在你的面前表演

核心内容形式:体积视频 参考对标案例深度解读: 体积视频,这一全新的内容形式,正在引领我们进入一个前所未有的四维体验时代。它将传统的演艺形式推向了新的高度,让我们能够更加深入地沉浸在虚拟世界中,感受前所未有的视听盛宴。 在这一领域,有一个引人注目的案例,那…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

RFID推动新能源汽车零部件生产系统管理应用案例

RFID推动新能源汽车零部件生产系统管理应用案例 一、项目背景 新能源汽车零部件场景 在新能源汽车零部件生产领域&#xff0c;电子冷却水泵等关键部件的装配溯源需求日益增长。传统 RFID 溯源方案采用 “网关 RFID 读写头” 模式&#xff0c;存在单点位单独头溯源、网关布线…...

Redis专题-实战篇一-基于Session和Redis实现登录业务

GitHub项目地址&#xff1a;https://github.com/whltaoin/redisLearningProject_hm-dianping 基于Session实现登录业务功能提交版本码&#xff1a;e34399f 基于Redis实现登录业务提交版本码&#xff1a;60bf740 一、导入黑马点评后端项目 项目架构图 1. 前期阶段2. 后续阶段导…...