当前位置: 首页 > news >正文

GCN 翻译 - 2

2 FAST  APROXIMATE  CONVOLUTIONS ON GRAPHS

在这一章节,我们为这种特殊的的图基础的神经网络模型f(X, A)提供理论上的支持。我们考虑一个多层的图卷积网络(GCN),它通过以下方式进行层间的传播:

H^{(l+1)} = \sigma (\widetilde{D}^{-1/2} \widetilde{A}(\widetilde{D}^{-1/2} H^{(l)}W^{(l)}) \quad (2)

这里,\widetilde{A} = A+ I_{N}是无向图邻接矩阵加上自己本身。I_{N}是对称矩阵,\widetilde{D_{ii}} = \sum _j\widetilde{A_{ij}},W^{(l)}是层的训练权重矩阵。\sigma (.)表示激活函数,例如ReLu.H^{(l)}\in R^{N*D}l^{th}层的激活矩阵,H^{(0)} = X.在接下来中,我们将会展示,这种规则的传播方式是局部谱域滤波的一阶近似。

2.1 SPECTRAL GRAPH CONVOLUTIONS

我们考虑图上的谱域卷积 : 多维信号x\in R^N,用参数\theta \in R^N定义的傅里叶过滤器g_\theta =diag(\theta ),i.e.:

g_\theta * x = Ug_\theta U^{T}x, \quad (3)

这里U是归一化的图拉普拉斯矩阵的特征向量矩阵,这里L = I_N - D^{-1/2}AD^{-1/2} = U \Lambda U^{T},

对角矩阵是特征值\LambdaU^Tx是x的图傅里叶的转换。我们可以理解g_\theta是拉普拉斯矩阵L的特征值的函数,即g_\theta (\Lambda )。计算公式(3)是非常繁重的计算,因为特征向量的矩阵U的乘法是O(N^2)。并且,在大的图上计算L的特征值分解,其计算量之大以至于无法做到。为了规避在大图上特征值分解的问题,g_{\theta }(\Lambda )近似是切比雪夫多项式K^{th}级截断T_k(x) :

g_\theta (\Lambda )\approx \sum_{k=0}^{K}{\theta_k}^{'}T_k(\widetilde{\Lambda }) \quad (4)

\widetilde{\Lambda } = \frac{2}{\lambda _{max}}\Lambda - I_N\lambda _{max}表示L的最大特征值。\theta ^{'} \in R^K是切比雪夫向量的系数。切比雪夫多项式递归地定义为T_k(x) = 2xT_{(k-1)}(x) - T_{k-2}(x),这里面T_0(x) = 1 , T_1(x) = x

回到我们信号x过滤器

{g_\theta}^{'} * x \approx \sum_{k=0}^{K}{\theta _k}^{'}T_k(\widetilde{L})x,\quad (5)

这里\widetilde{L} = \frac{2}{\lambda_{max} }L - I_N;可以轻易验证(U\Lambda U^{T})^k = U \Lambda ^kU^T。这个表达式是K阶截断的拉普拉斯多项式近似,它依赖于中心节点周围做多K个节点的作用。公式 5的复杂度是O(|\varepsilon |),随着边的数量线性增长。Defferrard et al 使用K阶卷积定义了图上的卷积网络。

2.2 LAYER-WISE LINEAR MODEL

通过公式5,图卷积神经网络可以叠多个卷积层,每一层都是非线性的。现在,如果我们将层的卷积操作K=1,即图谱域拉普拉斯矩阵L的限行函数。

这种一阶的线性方式,我们仍然可以罗列多层的卷积层,这不局限于切比雪夫多项式。我直觉期望这样的模型能够对于点的度数很高的分布(例如,社交网络、引用网络、知识图谱和其他一些真实世界的数据库)的图结构起到减轻过拟合的作用。并且,对于一定的计算资源,这种一阶的layer-wise方式能够建立更深的网络。

这样一种GCN的方式,我们近似\lambda_{max} \approx 2,训练过程中,网络的参数适应如下方式:

g_{\theta^{'}} * x = {\theta _0}^{'}x + {\theta _1}^{'}(L- I_N)x= {\theta _0}^{'}x - {\theta _1}^{'}D^{-1/2}AD^{-1/2}x, \quad (6)

这里2个自由参数\theta _0^{'}\theta _1^{'}。这个过滤器的参数被整个网络共享。多层卷积过滤能够卷积到一个节点的第K层邻居,k就是图神经网络卷积层的层数。

在实际中,限制参数的数量以减少计算(例如矩阵乘法)已解决过拟合的问题,这种优化可以得到如下公式g_\theta *x \approx \theta (I_N + D^{-1/2}AD^{-1/2})x,\quad (7)

一个参数\theta =\theta _0^{'}=-\theta _1^{'}。注意I_N + D^{-1/2}AD^{-1/2}的特征值取值范围在[0,2]。在神经网络里面叠多层这样的操作将导致数值不稳定,以及神经网络梯度的消失。为了有效缓解这个问题,我们将使用再归一化的技巧:I_N + D^{-1/2}AD^{-1/2}->\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}\widetilde{A} = A + I_N\widetilde{D_{ii}} = \sum_{j}\widetilde{A_{ij}}

我们可以将上述的定义真正泛化到一个信号X\in R^{N*C},带有C个输入通道(例如,每一个节点有C维的特征向量),F过滤和特征映射如下:

Z = \widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}X\Theta ,\quad (8)

这里\Theta \in R^{C*F}是过滤矩阵的参数,Z\in R^{N*F}是卷积信号矩阵。这个过滤操作有O(|\varepsilon|FC )的复杂度,\widetilde{A}X是稀疏矩阵和稠密矩阵的乘积。

相关文章:

GCN 翻译 - 2

2 FAST APROXIMATE CONVOLUTIONS ON GRAPHS 在这一章节,我们为这种特殊的的图基础的神经网络模型f(X, A)提供理论上的支持。我们考虑一个多层的图卷积网络(GCN),它通过以下方式进行层间的传播: 这里,是无…...

HBase 的安装与部署

目录 1 启动 zookeeper2 启动 Hadoop3 HBase 的安装与部署4 HBase 高可用 1 启动 zookeeper [huweihadoop101 ~]$ bin/zk_cluster.sh start2 启动 Hadoop [huweihadoop101 ~]$ bin/hdp_cluster.sh start3 HBase 的安装与部署 (1)将 hbase-2.0.5-bin.tar.…...

236.二叉搜索树的公共祖先

236.二叉树的公共祖先 思路 看到题想的是找到两个点的各自路径利用stack保存,根据路径长度大小将两个stack的值对齐到同一层,之后同时出栈节点,若相同则找到祖先节点。但是效率不高 看了大佬代码,递归思想很难理解。 根据大佬…...

【论文精读】大语言模型融合知识图谱的问答系统研究

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...

LabVIEW高精度天线自动测试系统

LabVIEW高精度天线自动测试系统 系统是一个集成了LabVIEW软件的自动化天线测试平台,提高天线性能测试的精度与效率。系统通过远程控制测试仪表,实现了数据采集、方向图绘制、参数计算等功能,特别适用于对天线辐射特性的精确测量。 在天线的…...

7.3 支付模块 - 创建订单、查询订单、通知

支付模块 - 创建订单、查询订单、通知 文章目录 支付模块 - 创建订单、查询订单、通知一、生成支付二维码1.1 数据模型1.1.1 订单表1.1.2 订单明细表1.1.3 支付交易记录表 1.2 执行流程1.3 Dto1.3.1 AddOrderDto 商品订单1.3.2 PayRecordDto支付交易记录扩展字段1.3.3 雪花算法…...

灵魂指针,教给(一)

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看,已成习惯 创作不易,多多支持! 一、内存和地址 1.1 内存 在介绍知识之前,先来想一个生活中的小栗子: 假如把你放在一个有100间屋子的酒店…...

Linux 开发工具 yum、git、gdb

目录 一、yum 1、软件包 2、rzsz 3、注意事项 4、查看软件包 5、安装软件 6、卸载软件 二、git操作 1、克隆三板斧 2、第一次使用会出现以下情况: 未配置用户名和邮箱: push后弹出提示 三、gdb使用 1、背景 2、使用方法 例一&#xff1a…...

Markdown

这里写自定义目录标题 欢迎使用Markdown编辑器 新的改变 功能快捷键 合理的创建标题,有助于目录的生成 如何改变文本的样式 插入链接与图片 如何插入一段漂亮的代码片 生成一个适合你的列表 创建一个表格 设定内容居中、居左、居右 SmartyPants 创建一个自定义列表 …...

【Oracle】oracle中sql给表新增字段并添加注释说明;mysql新增、修改字段

oracle中sql给表新增字段并添加注释说明 ALTER TABLE 表名 ADD 字段名 类型 COMMENT ON COLUMN 表面.字段名 IS ‘注释内容’ ALTER TABLE GROUP ADD T NUMBER(18) COMMENT ON COLUMN GROUP.T IS ‘ID’ mysql新增、修改字段、已有字段增加默认值 ALTER TABLE 表名 ADD COL…...

【汇总】pytest简易教程

pytest作为python技术栈里面主流、火热的技术,非常有必要好好学一下,因为工作和面试都能用上; 它不仅简单易用,还很强大灵活,重点掌握fixture、parametrize参数化、allure-pytest插件等,这些在后续自动化框…...

openssl调试记录

openssl不能直接解密16进制密文,需要把密文转化成base64格式才能解密 调试记录如下:...

3.7练习题解

一共五道题: 1. PERKET: 观察容易发现n的值很小,所以我们可以考虑使用dfs的方法进行解答,首先我们可以考虑一共有n种配料,那么我们就可以考虑到可以选择1到n种配料数目,然后基于这个思路我们再对其进行判断…...

MQ的消费模式-消息是推还是拉

文章目录 概述RocketMQ默认pushRabbitMQ默认pushKafka默认拉PullActiveMQ默认push 概述 MQ的消费模式可以大致分为两种,一种是推Push,一种是拉Pull Push是服务端主动推送消息给客户端,Pull是客户端需要主动到服务端轮询获取数据。 推优点是及…...

一个平台满足你对测试工具的所有需求

背景 目前,测试人员普遍使用的测试工具有Postman、JMeter等,但这些工具都存在一定的局限性。例如,Postman缺少对API性能测试方面的支持,而JMeter则缺乏一个整合测试报告、测试脚本的统一管理系统以及UI测试功能。 RunnerGo是什么…...

【C语言】【字符串函数】【超详解】【上】!!!

前言: 在学习C语言的过程中,字符串、字符数组等对新手来说总是会有疏忽,在已有的库函数中,我们平时用到最多的就是关于字符串的函数,今天我们就来详细学习字符串函数的相关内容。 下面我们就开始讲解字符串函数&#x…...

算法沉淀——动态规划之其它背包问题与卡特兰数(leetcode真题剖析)

算法沉淀——动态规划之其它背包问题与卡特兰数 二维费用的背包问题01.一和零02.盈利计划 似包非包组合总和 Ⅳ 卡特兰数不同的二叉搜索树 二维费用的背包问题 01.一和零 题目链接:https://leetcode.cn/problems/ones-and-zeroes/ 给你一个二进制字符串数组 strs…...

selenium中ChromeDriver配置,一把过,并且教你伪装

最近正值毕业季,我之前不是写了个问卷星代码嘛,昨晚上有人凌晨1点加我,问我相关内容。 由于我之前C盘重装了一下,导致我很多东西空有其表,实际不能用,借此机会,向大家编写ChromeDriver配置&…...

vue3 + vite 项目可以使用纯Js开发吗?

答案:可以 创建项目: 按照链接参考或者按官方: webstorm 创建vue3 vite 项目-CSDN博客 项目目录 tsconfig.json 配置允许js allowJs指定是否编译js文件,在任意文件当中,如果我们模块使用js写的,那么我们需要 将all…...

Java EE之线程安全问题

一.啥是线程安全问题 有些代码,在单个线程执行时完全正确,但同样的代码让多个线程同时执行,就会出现bug。例如以下代码: 给定一个变量count,让线程t1 t2分别自增5000次,然后进行打印,按理说co…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

centos 7 部署awstats 网站访问检测

一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...