当前位置: 首页 > news >正文

XGboost的整理

XGboost(extreme gradient boosting):高效实现了GBDT算法并进行了算法和工程上的许多改进。

XGboost的思路:

目标:建立k个回归树,使得树群的预测尽量接近真实值(准确率)而且有尽量大的泛化能力。

目标函数:L\left ( \phi \right )=\sum_{i}^{}l\left ( \hat{y_{i}}-y_{i} \right )+\sum_{k}^{}\Omega \left ( f_{k} \right )

i表示第i个样本,l\left ( \hat{y_{i}}-y_{i} \right )表示第i个样本的预测误差,误差越小越好,\sum_{k}^{}\Omega \left ( f_{k} \right )表示树的复杂度的函数,越小复杂度越低,泛化能力越强

\Omega \left ( f_{t} \right )=\gamma T+\frac{1}{2}\lambda \sum_{j=1}^{T}\omega _{j}^{2}

T:叶子的个数

\omega _{j}^{2}:w的L2模平方

目标要求预测尽量小,叶子节点尽量少,节点数值尽量不极端,回归树的参数(1)选取哪个特征分裂节点(2)节点的预测值。间接解决这两个参数的方法:贪心策略+最优化(二次最优化)

(1)选取哪个特征分裂节点:最简单的是枚举,选择loss function效果最好的那个

(2)确立节点的w以及最小的loss function,采用二次函数的求最值

步骤:选择一个feature分裂,计算loss function最小值,然后再选一个feature分列,又得到一个loss function最小值,枚举完成后,找一个效果最好的,把树分裂,在分裂的时候,每次节点分裂,loss function被影响的只有这个节点的样本,因而每次分裂,计算分裂的增益只需要关注打算分裂的那个节点的样本。接下来,继续分裂,按照上述方法,形成一棵树,再形成一棵树,每次在上一次的预测基础上取最优进一步分裂/建树。

停止条件:

①当引入的分裂带来的增益小于一个阈值的时候,可以剪掉这个分裂,所以并不是每一次分裂lossfunction整体都会增加的,有点预剪枝的意思,阈值参数为\gamma正则项里叶子节点数T的系数。

②当数达到最大深度时则停止建立决策树,设置一个超参数max_depth,树太深很容易出现过拟合。

③当样本权重和小于设定阈值时则停止建树,一个叶子节点样本太少时,终止,避免过拟合。

constant:常数,对于f\left ( x \right ),XGboost利用泰勒展开三项,做一个近似,f\left ( x \right )表示其中一颗回归树。

XGBoost与GBDT有什么不同:

1、GBDT是机器学习算法,XGboost是该算法的工程实现

2、在使用CART作为及分类器时,XGboost显式地加入了正则项来控制模型的复杂度,有利于防止过拟合,从而提高模型的泛化能力

3、GBDT在模型训练时只是用来代价函数的一阶导数信息,XGboost对代价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数

4、传统的GBDT采用CART作为基分类器,XGboost支持多种类型的基分类器,比如线性分类器

5、传统的GBDT在每轮迭代时使用全部的数据,XGboost则采用了与随机森林相似的策略,支持对数据进行采样

6、传统的GBDT没有设计对缺失值的处理,而XGboost能够自动学习出缺失值的处理策略。

使用xgboost库中的XGBRegressor类来创建XGboost模型

import xgboost as xgb
xgb_clf=xgb.XGBRegressor(max_depth=8,learning_rate=0.1,objective="reg:linear",eval_metric='rmse', n_estimators=3115,colsample_bytree=0.6, reg_alpha=3, reg_lambda=2, gamma=0.6,subsample=0.7, silent=1, n_jobs=-1)

XGBRegressor中的参数介绍:

max_depth:树的最大深度,增加这个值可以使模型更加复杂,并提高队训练数据的拟合程度,但可能会导致过拟合。通常需要通过交叉验证来调整这个参数。

learning_rate:学习率,用于控制每次迭代更新权重时的步长。

objective:定义了学习任务和相应的损失函数,“reg:linear” 表示我们正在解决一个线性回归问题。

eval_metric:评估指标,用于在训练过程中对模型的表现进行评估,‘rmse’ 表示均方根误差(Root Mean Squared Error),它是回归问题中常用的性能指标。

n_estimators:森林中树的数量,值越大,模型越复杂,训练时间也会相应增加。通常需要通过交叉验证来调整这个参数。

colsample_bytree:构建每棵树时对特征进行采样的比例。较小的值可以减少过拟合,提高模型的泛化能力。

reg_alpha:L1正则化项的权重,增加这个值同样也可以增加模型的正则化强度。

gamma:树的叶子节点进一步分裂所需的最小损失减少量。较大值会导致模型更保守,可能会导致模型的过拟合。

subsample:用于训练每棵树的样本占整个训练集的比例。

silent:设置为1可以关闭在运行时的日志信息。

n_jobs:并行运行的作业数。

基本模型:

import pandas as pd
import xgboost as xgb
import pandas
import numpy as np# 将pandas数据框加载到DMatrix
data_train = pandas.DataFrame(np.arange(12).reshape((4,3)), columns=['a', 'b', 'c'])
label_train = pandas.DataFrame(np.random.randint(2, size=4))
dtrain = xgb.DMatrix(data_train, label=label_train, missing=np.NaN) # 缺失值可以用构造函数中的默认值替换DMatrixdata_test = pandas.DataFrame(np.arange(12, 24).reshape((4,3)), columns=['a', 'b', 'c'])
label_test = pandas.DataFrame(np.random.randint(2, size=4))
dtest = xgb.DMatrix(data_test, label=label_test, missing=np.NaN) # 缺失值可以用构造函数中的默认值替换DMatrix# # 将CSV文件加载到DMatrix
# # label_column specifies the index of the column containing the true label
# dtrain = xgb.DMatrix('train.csv?format=csv&label_column=0')
# dtest = xgb.DMatrix('test.csv?format=csv&label_column=0')
# # XGBoost 中的解析器功能有限。当使用Python接口时,建议使用pandasread_csv或其他类似的实用程序而不是XGBoost的内置解析器。param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
param['nthread'] = 4
param['eval_metric'] = ['auc', 'ams@0'] # 指定多个评估指标
# 指定验证集以观察性能
evallist = [(dtrain, 'train'), (dtest, 'eval')]# 训练
num_round = 20
bst = xgb.train(param, dtrain, num_round, evallist, early_stopping_rounds=10) # 返回最后一次迭代的模型,而不是最好的模型
# early_stopping_rounds=10作用:如果模型在10轮内没有改善,则训练将提前停止,如果设置多个指标,则最后一个指标将用于提前停止
# 训练完成后,保存模型
bst.save_model('test_xgboost/0001.model')
# 模型转储到文本文件中
bst.dump_model('test_xgboost/dump.raw.txt')
# 加载模型
bst = xgb.Booster({'nthread': 4})  # 初始化模型,将线程数设置为4
bst.load_model('test_xgboost/0001.model')  # 加载模型
# 如果训练期间启动提前停止,可以从最佳迭代中获得预测
ypred = bst.predict(dtest, iteration_range=(0, bst.best_iteration + 1))
ypred = pd.DataFrame(ypred)
ypred.to_csv('test_xgboost/xgb_predict.csv', index=False)

 使用scikit-learn的方法

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_splitimport xgboost as xgbX, y = load_breast_cancer(return_X_y=True) # 加载数据
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=94)
# stratify=y:按目标变量分层划分,确保训练集和测试集中目标变量的比例与原始数据集相同
# random_state=94: 设置随机种子,保证每次划分的结果相同# 使用hist来构建树,并启用早期停止
early_stop = xgb.callback.EarlyStopping(rounds=2, metric_name='logloss', data_name='validation_0', save_best=True
)
clf = xgb.XGBClassifier(tree_method="hist", callbacks=[early_stop])
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
# 保存模型
clf.save_model("test_xgboost/clf.json")

https://xgboost.readthedocs.io/en/latest/python/index.html

XGBClassifier与XGBRegressor有什么区别:

目标函数:

XGBClassifier使用逻辑回归作为目标函数,用于分类任务;XGBRegressor使用平方误差 作为目标函数,用于回归任务。

评估指标:

XGBClassifier使用准确率F1 分数 作为评估指标;XGBRegressor使用 均方误差 或 R2 分数 作为评估指标。

其他区别:

XGBClassifier支持多分类,而 XGBRegressor仅支持回归。XGBClassifier 可以使用  或 线性模型 作为基学习器,而 XGBRegressor 仅支持  作为基学习器。

相关文章:

XGboost的整理

XGboost(extreme gradient boosting):高效实现了GBDT算法并进行了算法和工程上的许多改进。 XGboost的思路: 目标:建立k个回归树,使得树群的预测尽量接近真实值(准确率)而且有尽量大的泛化能力…...

java入门基础学习导览

本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到) 一 JAVA语言基础 二 流程控制 三 数组 字符串 与正则表达式 四 JAVA面向对象编程 五 JAVA 异常处理 六 JAVA输入输出 七 泛型与容器类 …...

网工内推 | 上市公司售前,大专以上即可,最高15K*13薪,补贴多

01 北京神州新桥科技有限公司 招聘岗位:售前工程师 职责描述: 1、完成项目的售前技术支持工作; 2、 配合销售进行新产品及解决方案的推广工作; 3、 配合销售完成用户的售前技术交流方案准备、现场技术交流、技术方案宣讲等工作…...

JAVA开发第一个Springboot WebApi项目

一、创建项目 1、用IDEA新建一个SpringBoot项目 注意JDK与Java版本的匹配,如果想选择jdk低版本,先要更改服务器URL:start.aliyun.com 2、添加依赖 (1)、Lombok (2)、Spring Web (3)、Mybatis Framework (4)、MySqlDriver 项目中的配置 pom.xml 如下 <?…...

基于springboot+vue的疫情管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

Qt 类的前置声明和头文件包含

1. 在头文件中引入另一个类经常有两种写法 1&#xff09;前置声明 2&#xff09;头文件包含 #ifndef FRMCOUPLE2_H #define FRMCOUPLE2_H#include <QWidget> //头文件包含namespace Ui { class frmcouple2; }//前置声明&#xff1a;QPushButton frmchkeyboard…...

Qt+FFmpeg+opengl从零制作视频播放器-1.项目介绍

1.简介 学习音视频开发&#xff0c;首先从做一款播放器开始是比较合理的&#xff0c;每一章节&#xff0c;我都会将源码贴在最后&#xff0c;此专栏你将学习到以下内容&#xff1a; 1&#xff09;音视频的解封装、解码&#xff1b; 2&#xff09;Qtopengl如何渲染视频&#…...

Learn OpenGL 01

OpenGL的定义 一般它被认为是一个API(Application Programming Interface, 应用程序编程接口)&#xff0c;包含了一系列可以操作图形、图像的函数。然而&#xff0c;OpenGL本身并不是一个API&#xff0c;它仅仅是一个由Khronos组织制定并维护的规范(Specification)。 OpenGL规…...

Java开发从入门到精通(一):Java的基础语法进阶

Java大数据开发和安全开发 &#xff08;一&#xff09;Java注释符1.1 单行注释 //1.2 多行注释 /* */1.3 文档注释 /** */1.4 各种注释区别1.5 注释的特点1.5 注释的快捷键 &#xff08;二&#xff09;Java的字面量&#xff08;三&#xff09;Java的变量3.1 认识变量3.2 为什么…...

【C++从0到王者】第五十一站:B+树

文章目录 一、B树1.B树的概念2.B树的特性3.B树的插入的过程4.总结 二、B*树1. B*树的概念2.B*树的分裂 三、总结四、B树系列和哈希和平衡搜索树作对比五、B树的一些应用1.索引2.MySQL索引3.MyISAM2.InnoDB 一、B树 1.B树的概念 B树是B树的变形&#xff0c;是在B树基础上优化的…...

Spring Cloud 面试题及答案整理,最新面试题

Spring Cloud中断路器的原理及其作用是什么&#xff1f; Spring Cloud断路器的原理和作用基于以下几个关键点&#xff1a; 1、故障隔离机制&#xff1a; 在微服务架构中&#xff0c;断路器作为一种故障隔离机制&#xff0c;当某个服务实例出现问题时&#xff0c;断路器会“断…...

使用Kali搭建钓鱼网站教程

一、前言 使用kali工具一分钟制作出和目标网站一模一样的钓鱼网站。目标用户使用钓鱼网站登录自己的账号&#xff0c;账号密码将被自动劫持。 二、钓鱼网站的制作过程 1.在虚拟机VMvare中登录kali linux 2.准备一个目标网址 3.在kail中搜索使用工具 4.在弹出的选项中选择第一…...

《TCP/IP详解 卷一》第15章 TCP数据流与窗口管理

目录 15.1 引言 15.2 交互式通信 15.3 延时确认 15.4 Nagle 算法 15.4.1 延时ACK与Nagle算法结合 15.4.2 禁用Nagle算法 15.5 流量控制与窗口管理 15.5.1 滑动窗口 15.5.2 零窗口与TCP持续计时器 15.5.3 糊涂窗口综合征 15.5.4 大容量缓存与自动调优 15.6 紧急机制…...

ContentType类型总结

ContentType类型总结 Content-Type是一个HTTP头部字段&#xff0c;用于指示资源的媒体类型&#xff08;MIME类型&#xff09;&#xff0c;以及可选的字符集和编码方式。它告诉浏览器或其他客户端如何解释接收到的数据。以下是一些常见的Content-Type类型及其用途&#xff1a; t…...

基于脚手架创建vue工程

环境要求: node.js:前端项目的运行环境 npm:javascript的包管理器 vue cli&#xff1a;项目脚手架 忘了自己有没有安装可以通过在黑窗口输入命令看一下 node -v npm -v 这里出现版本号就说明已经安装了 安装脚手架的命令:npm i vue/cli -g 创建vue基础工程 1.在一个没…...

【Http】OSI 和 TCP/IP,OSI,TCP/IP为什么网络要分层?

目录 OSI 和 TCP/IP OSI TCP/IP 为什么网络要分层&#xff1f; OSI 和 TCP/IP OSI ![image-20231205101106040](.assets/image-20231205101106040.pn OSI 的七层体系结构概念清楚&#xff0c;理论也很完整&#xff0c;但是它比较复杂而且不实用&#xff0c;而且有些功能在…...

STM32(5) GPIO(2)输出

1.点亮LED 1.1 推挽接法和开漏接法 要想点亮LED&#xff0c;有两种接法 推挽接法&#xff1a; 向寄存器写1&#xff0c;引脚输出高电平&#xff0c;LED点亮&#xff1b;向寄存器写0&#xff0c;引脚输出低电平&#xff0c;LED熄灭。 开漏接法&#xff1a; 向寄存器写0&…...

shell脚本一键部署docker

Docker介绍 Docker 是一个开源的平台&#xff0c;用于开发、交付和运行应用程序。它利用容器化技术&#xff0c;可以帮助开发人员更轻松地打包应用程序及其依赖项&#xff0c;并将其部署到任何环境中&#xff0c;无论是开发工作站、数据中心还是云中。以下是 Docker 的一些关键…...

vue2实现拖拽排序效果

1、首先下载 vuedraggable 插件 npm i -S vuedraggable2、使用方法 <template><div><div style"display: flex; justify-content: center; align-items: center"><div style"width: 120px; height: 60px; line-height: 60px; text-align…...

数据结构实验:二叉排序树

题目描述 对应给定的一个序列可以唯一确定一棵二叉排序树。然而&#xff0c;一棵给定的二叉排序树却可以由多种不同的序列得到。例如分别按照序列{3,1,4}和{3,4,1}插入初始为空的二叉排序树&#xff0c;都得到一样的结果。你的任务书对于输入的各种序列&#xff0c;判断它们是否…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...