当前位置: 首页 > news >正文

Codeforces Round 883 (Div. 3)(集训队加训1)

A.如果钉子与地面距离大于绳子的长度就必须剪

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = 2e6 + 9;
int a[N],b[N],cl[N];
void Lan(){int n;cin>>n;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];}ll ans=0;for(int i=1;i<=n;i++){if(a[i]>b[i]){ans++;}}cout<<ans<<'\n';
}
int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int q;cin>>q;while (q--) {Lan();}return 0;
}

B.

暴力枚举横竖2个斜

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = 2e3 + 9;
char a[N][N];
void Lan(){for(int i=3;i<=5;i++){for(int j=3;j<=5;j++){cin>>a[i][j];}}for(int i=3;i<=5;i++){for(int j=3;j<=5;j++){if(a[i][j]=='.'){continue;}if(a[i][j]==a[i+1][j+1] && a[i][j]==a[i+2][j+2]){cout<<a[i][j]<<'\n';return;}		if(a[i][j]==a[i+1][j] && a[i][j]==a[i+2][j]){cout<<a[i][j]<<'\n';return;}if(a[i][j]==a[i][j+1] && a[i][j]==a[i][j+2]){cout<<a[i][j]<<'\n';return;}if(a[i][j]==a[i-1][j+1] && a[i][j]==a[i-2][j+2]){cout<<a[i][j]<<'\n';return;}}}cout<<"DRAW"<<'\n';
}
int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int q;cin>>q;while (q--) {Lan();}return 0;
}

C.

贪心一下,然后结构体排序即可

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = 2e5 + 9;
ll t[N],prefix[N];
struct node{ll score,t,index;
}a[N];
bool cmp(node a,node b){return (a.score==b.score?(a.t==b.t?a.index<b.index:a.t<b.t):a.score>b.score);//排序
}
void Lan(){int n,m,h;cin>>n>>m>>h;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>t[j];}sort(t+1,t+1+m);//在矩阵中每行排序for(int j=1;j<=m;j++){prefix[j]=prefix[j-1]+t[j];//前缀和}ll res=0;int k;for(k=1;k<=m;k++){if(prefix[k]>h){break;}res+=prefix[k];}a[i].score=k,a[i].t=res,a[i].index=i;//存储}sort(a+1,a+1+n,cmp);for(int i=1;i<=n;i++){//找index==1if(a[i].index==1){cout<<i<<'\n';return;}}
}
int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int q;cin>>q;while (q--) {Lan();}return 0;
}

D.

先算不重叠的,再用相似三角形算重合面积

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long double ld;
const int N = 2e5 + 9;
int a[N],diff[N];
void Lan(){ld n,d,h;cin>>n>>d>>h;for(int i=1;i<=n;i++){cin>>a[i];}ld ans=n*d*h/2;for(int i=1;i<=n-1;i++){if(a[i]+h>a[i+1]){diff[i]=a[i]+h-a[i+1];}else{diff[i]=0;}}for(int i=1;i<=n-1;i++){//diff[i]/x=h/d->x*h=d*diff[i];->x=d*diff[i]/hif(diff[i]){ans-=(d*diff[i]/h)*(diff[i])/2;}}cout<<fixed<<setprecision(6)<<ans<<'\n';
}
int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int q;cin>>q;while (q--) {Lan();}return 0;
}

E1-E2.

暴力枚举1e6,后面最多到k*k二分即可

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = 2e6 + 9;
int a[N];
set<ll> st;
void Lan(){ll n;cin>>n;if(st.count(n)){cout<<"YES"<<'\n';}else{ll x=sqrt(n);if(x>1 && x*(x+1)==n-1){cout<<"YES"<<'\n';}else{cout<<"NO"<<'\n';}}
}
void init(){for(ll i=2;i<=1e6;i++){ll x=1+i+i*i;ll y=i*i;st.insert(x);while(1){if(1.0*y>1.0*1e18/i){break;}y*=i;x+=y;if(x>1e18){break;}st.insert(x);}}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);init();int q;cin>>q;while (q--) {Lan();}return 0;
}

F.

思路好想的交互,但是写很shi

#include<bits/stdc++.h>
#define eps 1e-5
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = 2e6 + 9;
int a[N],c[N],fzc[N];
/*变了就删去不是这个数字的等下一次变把不是这个数字的发送即可不能固定等第2次是否变如果第一次变了不变了第三次变了第四次不变就会wa*/
void Lan(){int n;cin>>n;for(int i=1;i<=9;i++){//初始化!c[i]=0;fzc[i]=0;}for(int i=1;i<=n;i++){cin>>a[i];}for(int i=1;i<=n;i++){//记录现在的数字种类以及数量c[a[i]]++;}cout<<"-"<<" "<<0<<endl;//第一次for(int i=1;i<=n;i++){cin>>a[i];}int keynum=0;//找多的,从少的变到多的for(int i=1;i<=n;i++){fzc[a[i]]++;}for(int i=1;i<=9;i++){if(fzc[i]>c[i]){keynum=i;break;}}if(!keynum){for(int i=1;i<=9;i++){fzc[i]=0;}cout<<'-'<<" "<<0<<endl;//必然要换了	for(int i=1;i<=n;i++){cin>>a[i];	}for(int i=1;i<=n;i++){fzc[a[i]]++;}for(int i=1;i<=9;i++){if(fzc[i]>c[i]){keynum=i;break;}}}vector<int> del;//可以删去的数字for(int i=1;i<=n;i++){if(a[i]!=keynum){del.push_back(i);}}cout<<"-"<<" "<<(int)del.size()<<" ";for(auto &i : del){cout<<i<<" ";}cout<<endl;for(int i=1;i<=9;i++){//清空c[i]=0;fzc[i]=0;}//结束上述过程后数组其实只存在一个数字,因此等2轮找不是这个数字的index即可for(int i=1;i<=n-(int)del.size();i++){//得到数组只是接受一下回复信息cin>>a[i];}ll ansindex=0;for(int i=1;i<=n-(int)del.size();i++){if(a[i]!=keynum){ansindex=i;break;}}if(ansindex){cout<<"!"<<" "<<ansindex<<endl;return;}cout<<"-"<<" "<<0<<endl;//这轮结束后必然会有换的for(int i=1;i<=n-(int)del.size();i++){cin>>a[i];}for(int i=1;i<=n;i++){//找到对应indexif(a[i]!=keynum){ansindex=i;break;}}cout<<"!"<<" "<<ansindex<<endl;
}
int main() {// ios::sync_with_stdio(false);// cin.tie(0),cout.tie(0);int q;cin>>q;while (q--) {Lan();}return 0;
}

相关文章:

Codeforces Round 883 (Div. 3)(集训队加训1)

A.如果钉子与地面距离大于绳子的长度就必须剪 #include<bits/stdc.h> #define eps 1e-5 #define INF 1e9 using namespace std; typedef long long ll; const int N 2e6 9; int a[N],b[N],cl[N]; void Lan(){int n;cin>>n;for(int i1;i<n;i){cin>>a[i]…...

自封装 bind 方法(二)

因为 bind 的使用方法是 某函数.bind(某对象&#xff0c;...剩余参数) 所以需要在 Function.prototype 上进行编程将传递的参数中的某对象和剩余参数使用 apply 的方式在一个回调函数中执行即可要在第一层获取到被绑定函数的 this&#xff0c;因为要拿到那个函数用 apply /***…...

vcomp140.dll丢失如何修复,5种修复方法轻松搞定vcomp140.dll问题

vcomp140.dll文件的丢失可能会引发一系列系统运行与软件功能上的问题。具体来说&#xff0c;这个动态链接库文件是Visual C Redistributable的一部分&#xff0c;对于许多基于此环境开发的应用程序至关重要。一旦缺失&#xff0c;可能会导致部分应用程序无法正常启动或运行&…...

计算机视觉(Computer Vision)和机器视觉(Machine Vision)

举例说明计算机视觉&#xff08;CV&#xff09;技术的优势和挑战 计算机视觉&#xff08;CV&#xff09;技术是一种使用计算机科学和机器学习方法来解释、分析和理解图像和视频的技术。它的优势和挑战如下&#xff1a; 优势&#xff1a; 高效性&#xff1a;CV技术可以快速处…...

国内用ChatGPT可以吗

PS: 无限次数&#xff0c;无需魔法&#xff0c;登录即可使用,网页打开下面 tj4.mnsfdx.net 点击跳转链接 国内用ChatGPT可以吗&#xff1f;简单来说&#xff0c;是可以的&#xff0c;国内可以使用ChatGPT。ChatGPT是一款实体机器翻译工具&#xff0c;也是一种人工智能技术&…...

数据分析-Pandas两种分组箱线图比较

数据分析-Pandas两种分组箱线图比较 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&am…...

Mac版2024 CleanMyMac X 4.14.6 核心功能详解以及永久下载和激活入口

CleanMyMac 是 macOS 上久负盛名的系统清理工具&#xff0c;2018 年&#xff0c;里程碑式版本 CleanMyMac X 正式发布。不仅仅是命名上的变化&#xff0c;焕然一新的 UI、流畅的动画也让它显得更加精致。新增的系统优化、软件更新等功能&#xff0c;使得在日常使用 macOS 时有了…...

Java引用传递及基本应用

在 Java 中&#xff0c;传递参数的方式主要有两种&#xff1a;值传递&#xff08;传递的是对象的引用值&#xff09;和引用传递。本教程将重点介绍 Java 中的引用传递以及其基本应用。 1. 引用传递概念 在 Java 中&#xff0c;所有的方法参数都是通过值传递的。对于对象类型的…...

低代码测试自动化

每个企业都希望将产品快速推向市场。虽然低代码无代码测试自动化可以帮助组织实现这一目标&#xff0c;但测试人员必须牢记几件事&#xff0c;才能通过低代码无代码来推进他们的组织。 低代码测试自动化的重要性是什么&#xff1f; 低代码测试自动化加速了测试生命周期。借助简…...

Linux 文件操作命令

1 文件与目录操作 cd /home 进入 ‘/home’ 目录 cd .. 返回上一级目录cd ../.. 返回上两级目录cd - 返回上次所在目录cp file1 file2 将file1复制为file2cp -a dir1 dir2 复制一个目录 cp -a /tmp/dir1 . 复制一个…...

机器学习-面经(part8、贝叶斯和其他知识点)

机器学习面经其他系列 机器学习面经系列的其他部分如下所示&#xff1a; 机器学习-面经(part1)-初步说明 机器学习-面经(part2)-交叉验证、超参数优化、评价指标等内容 机器学习-面经(part3)-正则化、特征工程面试问题与解答合集机器学习-面经(part4)-决策树共5000字的面试问…...

图数据库 之 Neo4j - 应用场景3 - 知识图谱(8)

背景 知识图谱的复杂性:知识图谱通常包含大量的实体、关系和属性,以及它们之间的复杂关联。传统的关系型数据库在处理这种复杂性时可能面临性能和灵活性的挑战。 图数据库的优势:图数据库是一种专门用于存储和处理图结构数据的数据库。它们使用节点和边来表示实体和关系,并…...

redis 性能优化三

前言 如果Redis 没有执行大量的慢查询,同时也没有删除大量的过期的keys&#xff0c;那么我们该怎么办呢&#xff1f;那么我们是不是就应该关注影响性能的其他机制了&#xff0c;也就是文件系统和操作系统了。 Redis 会把数据持久化到磁盘&#xff0c;这个过程依赖文件系统来完…...

Python用Tkinter实现圆的半径 面积 周长 知一求二程序

Python用Tkinter实现圆的半径 面积 周长 知一求二程序 import tkinter as tk from tkinter import messagebox from tkinter import *app tk.Tk() app.title(圆的半径 面积 周长 知一求二程序) app.geometry(425x125)label1 tk.Label(app, text"半径") label2 tk.…...

电源环路补偿的目标是避免产生正反馈

在一般的认识中&#xff0c;进行电源环路设计的目的是保证电源输出端的电压稳定&#xff0c;在误差信号传入系统时&#xff0c;系统进行负反馈调节&#xff0c;矫正干扰信号带来的误差量。 那么&#xff0c;为什么要设置成这样&#xff0c;不稳定会有什么后果等等&#xff0c;…...

SSM+MySQL替换探索 openGauss对比postgresql12

SSM 介绍 SSM&#xff08;SpringSpringMVCMyBatis&#xff09;框架集由 Spring、MyBatis 两个开源框架整合而成&#xff08;SpringMVC 是 Spring 中的部分内容&#xff09;&#xff0c;常作为数据源较简单的 web 项目的框架。 Spring Spring 就像是整个项目中装配 bean 的大…...

XGboost的整理

XGboost&#xff08;extreme gradient boosting&#xff09;:高效实现了GBDT算法并进行了算法和工程上的许多改进。 XGboost的思路&#xff1a; 目标&#xff1a;建立k个回归树&#xff0c;使得树群的预测尽量接近真实值&#xff08;准确率&#xff09;而且有尽量大的泛化能力…...

java入门基础学习导览

本篇文章会持续更新直到更新完毕&#xff0c;关注博主不迷路~&#xff08;如果没有超链接&#xff0c;表示还没有更新到&#xff09; 一 JAVA语言基础 二 流程控制 三 数组 字符串 与正则表达式 四 JAVA面向对象编程 五 JAVA 异常处理 六 JAVA输入输出 七 泛型与容器类 …...

网工内推 | 上市公司售前,大专以上即可,最高15K*13薪,补贴多

01 北京神州新桥科技有限公司 招聘岗位&#xff1a;售前工程师 职责描述&#xff1a; 1、完成项目的售前技术支持工作&#xff1b; 2、 配合销售进行新产品及解决方案的推广工作&#xff1b; 3、 配合销售完成用户的售前技术交流方案准备、现场技术交流、技术方案宣讲等工作…...

JAVA开发第一个Springboot WebApi项目

一、创建项目 1、用IDEA新建一个SpringBoot项目 注意JDK与Java版本的匹配,如果想选择jdk低版本,先要更改服务器URL:start.aliyun.com 2、添加依赖 (1)、Lombok (2)、Spring Web (3)、Mybatis Framework (4)、MySqlDriver 项目中的配置 pom.xml 如下 <?…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...