当前位置: 首页 > news >正文

基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统

 💡💡💡本文主要内容:详细介绍了疲劳驾驶行为检测整个过程,从数据集到训练模型到结果可视化分析。

                                                             博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.疲劳驾驶行为

每一年,中国都因交通事故而造成数万人的死亡,造成了严重的损失。而其中司机疲劳驾驶,是导致事故发生的重要原因之一。但是当司机们陷入疲劳驾驶状态时,往往司机本人对此状态并不在意,甚至会陷入睡眠状态!整治疲劳驾驶行为成为了交通运输行业的首要任务。随着信息技术的日新月异,如今,我们有机会使用信息技术,消除疲劳驾驶的隐患。实现了通过驾驶员的眼部、嘴部动作实时推断疲劳状态,使得驾驶员能及时的被本地语音方式提醒,避免疲劳驾驶,同时后台管理人员能接收到司机疲劳报警信息。

1.1数据集介绍

数据集大小2914张,类别['closed_eye','closed_mouth','open_eye','open_mouth']

2.基于YOLOv5的疲劳驾驶行为检测

2.1 修改fatigue.yaml

# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
#   /parent_folder
#     /VOC
#     /yolov5# train and val datasets (image directory or *.txt file with image paths)
train: ./data/fatigue/train.txt # 16551 images
val: ./data/fatigue/val.txt  # 4952 images# number of classes
nc: 4# class names
names: ['closed_eye','closed_mouth','open_eye','open_mouth']

2.2 修改train.py 

def parse_opt(known=False):"""Parses command-line arguments for YOLOv5 training, validation, and testing."""parser = argparse.ArgumentParser()parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov5s.pt", help="initial weights path")parser.add_argument("--cfg", type=str, default="models/yolov5s.yaml", help="model.yaml path")parser.add_argument("--data", type=str, default=ROOT / "data/fatigue.yaml", help="dataset.yaml path")parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")parser.add_argument("--epochs", type=int, default=50, help="total training epochs")parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")parser.add_argument("--rect", action="store_true", help="rectangular training")parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")parser.add_argument("--noval", action="store_true", help="only validate final epoch")parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")parser.add_argument("--noplots", action="store_true", help="save no plot files")parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")parser.add_argument("--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population")

 2.3 结果可视化分析 

YOLOv5s summary: 157 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 25/25 [00:10<00:00,  2.38it/s]all        787       2109       0.97      0.982       0.99      0.611closed_eye        787        566      0.953      0.979      0.988       0.54closed_mouth        787        701      0.986      0.997      0.989      0.622open_eye        787        774      0.955      0.967      0.988      0.545open_mouth        787         68      0.985      0.985      0.995      0.736

confusion_matrix.png文件是一个混淆矩阵的可视化图像,用于展示模型在不同类别上的分类效果。混淆矩阵是一个n×n的矩阵,其中n为分类数目,矩阵的每一行代表一个真实类别,每一列代表一个预测类别,矩阵中的每一个元素表示真实类别为行对应的类别,而预测类别为列对应的类别的样本数。

PR_curve.png

PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map

 预测结果: 

关注下方名片,即可获取源码。  

相关文章:

基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文主要内容:详细介绍了疲劳驾驶行为检测整个过程&#xff0c;从数据集到训练模型到结果可视化分析。 博主简介 AI小怪兽&#xff0c;YOLO骨灰级玩家&#xff0c;1&#xff09;YOLOv5、v7、v8优化创新&#xff0c;轻松涨点和模型轻量…...

融合软硬件串流多媒体技术的远程控制方案

远程技术已经发展得有相当水平了&#xff0c;在远程办公&#xff0c;云游戏&#xff0c;云渲染等领域有相当多的应用场景&#xff0c;以向日葵&#xff0c;todesk rustdesk等优秀产品攻城略地&#xff0c;估值越来越高。占据了通用应用的方方面面。 但是细分市场&#xff0c;还…...

Spring中的数据校验---JSR303

介绍–什么是JSR303 JSR 303是Java中的一项规范&#xff0c;用于定义在Java应用程序中执行数据校验的元数据模型和API。JSR 303的官方名称是"Bean Validation"&#xff0c;它提供了一种在Java对象级别上执行验证的方式&#xff0c;通常用于确保输入数据的完整性和准…...

“揭秘网络握手与挥别:TCP三次握手和四次挥手全解析“

前言 在计算机网络中&#xff0c;TCP&#xff08;传输控制协议&#xff09;是一种重要的通信协议&#xff0c;用于在网络中的两台计算机之间建立可靠的连接并交换数据。TCP协议通过“三次握手”和“四次挥手”的过程来建立和终止连接&#xff0c;确保数据的准确传输。 一、三…...

Java开发工程师面试题(Spring)

一、Spring Bean的生命周期 生命周期可以分为以下几步&#xff1a; 通过Spring框架的beanFactory工厂利用反射机制创建bean对象。根据set方法或者有参构造方法给bean对象的属性进行依赖注入。判断当前bean对象是否实现相关aware接口&#xff0c;诸如beanNameAware、beanFactor…...

【C++】string类的基础操作

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读 1. 基本概述 2. string类对象的常见构造 3. string类对象的容量操作 4. string类对象的访问及遍历操作 5. 迭代器 6.…...

Java项目:40 springboot月度员工绩效考核管理系统009

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本系统的功能分为管理员和员工两个角色 管理员的功能有&#xff1a; &#xff08;1&#xff09;个人中心管理功能&#xff0c;添加管理员账号…...

opengl 学习(三)-----着色器

着色器 分类demo效果解析教程 分类 OPengl C demo #include "glad/glad.h" #include "glfw3.h" #include <iostream> #include <cmath> #include <vector>#include <string> #include <fstream> #include <sstream>…...

电销平台架构的演变与升级

简介 信也科技电销平台承载了公司400多坐席的日常外呼任务&#xff0c;随着公司业务规模不断增长&#xff0c;业务复杂度不断提升&#xff0c;营销模式需要多样化&#xff0c;营销流程需要更加灵活。为了更好地赋能业务、提高客户转化率&#xff0c;电销平台不断升级优化&#…...

轻薄蓝牙工牌室内人员定位应用

在现代化企业管理的背景下&#xff0c;轻薄蓝牙工牌人员定位应用逐渐崭露头角&#xff0c;成为提升企业效率和安全性的重要工具。本文将从轻薄蓝牙工牌的定义、特点、应用场景以及未来发展趋势等方面&#xff0c;对其进行全面深入的探讨。 一、轻薄蓝牙工牌的定义与特点 轻薄…...

好物周刊#46:在线工具箱

https://github.com/cunyu1943 村雨遥的好物周刊&#xff0c;记录每周看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;每周五发布。 一、项目 1. twelvet 一款基于 Spring Cloud Alibaba 的权限管理系统&#xff0c;集成市面上流行库&#xff0c;可以作用为快…...

20240306-1-大数据的几个面试题目

面试题目 1. 相同URL 题目: 给定a、b两个文件&#xff0c;各存放50亿个url&#xff0c;每个url各占64字节&#xff0c;内存限制是4G&#xff0c;让你找出a、b文件共同的url&#xff1f; 方案1&#xff1a;估计每个文件的大小为50G64320G&#xff0c;远远大于内存限制的4G。所以…...

Vue中如何处理用户权限?

在前端开发中&#xff0c;处理用户权限是非常重要的一个方面。Vue作为一种流行的前端框架&#xff0c;提供了很多便捷的方式来管理用户权限。本文将介绍一些Vue中处理用户权限的方法 1. 使用路由守卫 Vue Router提供了一个功能强大的功能&#xff0c;即导航守卫&#xff08;N…...

【STM32】HAL库 CubeMX教程---基本定时器 定时

目录 一、基本定时器的作用 二、常用型号的TIM时钟频率 三、CubeMX配置 四、编写执行代码 实验目标&#xff1a; 通过CUbeMXHAL&#xff0c;配置TIM6&#xff0c;1s中断一次&#xff0c;闪烁LED。 一、基本定时器的作用 基本定时器&#xff0c;主要用于实现定时和计数功能…...

2024年最新整理腾讯云学生服务器价格、续费和购买流程

2024年腾讯云学生服务器优惠活动「云校园」&#xff0c;学生服务器优惠价格&#xff1a;轻量应用服务器2核2G学生价30元3个月、58元6个月、112元一年&#xff0c;轻量应用服务器4核8G配置191.1元3个月、352.8元6个月、646.8元一年&#xff0c;CVM云服务器2核4G配置842.4元一年&…...

【QT】重载的信号槽/槽函数做lambda表达式

重载的信号槽 函数指针&#xff1a; int fun(int a,long b) int (*funp)(int, long) fun; 实现回调函数就需要函数指针 信号重载 派生类槽函数发送两个信号 派生类给父类发两个信号 void (SubWidget::*mysigsub)() &SubWidget::sigSub;connect(&subw,mysigsub,t…...

C++之类(一)

1&#xff0c;封装 1.1 封装的引用 封装是C面向对象三大特性之一 封装的意义&#xff1a; 将属性和行为作为一个整体&#xff0c;表现生活中的事物 将属性和行为加以权限控制 1.1.1 封装意义一&#xff1a; 在设计类的时候&#xff0c;属性和行为写在一起&#xff0c;表…...

【工具类】repo是什么,repo常用命令,repo和git和git-repo的关系

1. repo 1. repo 1.1. repo是什么1.2. 安装1.3. repo 命令 1.3.1. repo help1.3.2. repo init1.3.3. repo sync1.3.4. repo upload1.3.5. repo start1.3.6. repo forall 1.4. mainfest 文件1.5. git-repo简介(非android repo)1.6. 参考资料 1.1. repo是什么 Repo 是一个 go…...

Java中可以实现的定时任务策略

Java中可以实现的定时任务策略 文章目录 Java中可以实现的定时任务策略自定义独立线程JDK提供的调度线程池-**ScheduledExecutorService**内核是Spring的Task执行调度quartz调度 #mermaid-svg-mQ9rPqk0Ds3ULnvD {font-family:"trebuchet ms",verdana,arial,sans-seri…...

【目标分类图像增强方法】

图像增强方法及其原理 目标分类图像增强是一种用于提高深度学习模型泛化能力的技术&#xff0c;通过在训练过程中对原始图像进行各种变换来增加模型所见数据的多样性。以下是几种常见的图像增强方法及其原理&#xff1a; 几何变换&#xff1a; 旋转&#xff08;Rotation&#…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...