当前位置: 首页 > news >正文

常见的验证码

一、短信验证码

前端:

  1. 用户填写手机号,点击按钮发送请求
  2. 用户短信得到验证码后,用户填写表单
  3. 提交 form 表单,进行验证

后台:

  1. 随机生成几位验证码
  2. 并将生成时间、手机号、验证码存储起来,可以存到session、redis、数据库等
  3. 调用短信接口提供的sdk短信发送接口,将验证码发送到指定的手机号上

参考链接

二、图形验证码

前端:

  1. 用户填写手机号,在 input 框失去焦点时,发送获取验证码请求
  2. 得到后台的 base64 编码,并显示出来

<img src={`data:;base64,${verifyCodeUrl}`} onClick={handleGetVerifyCode} />

  1. 提交 form 表单,进行验证
但是它不安全,脚本可以高准确率、快速地识别出答案

类似的还有算数验证码

image.png

三、滑动拼图验证码

根据用户滑动滑块的响应时间,拖拽速度,时间,位置,轨迹,重试次数等验证,相对来说更安全。

  1. 有三张图,带缺口的背景图、拼图、完整的背景图
  2. 操作:

用户的操作:按住滑块,拖动图片至阴影位置,完成验证。

开发人员:

1)对比完整图和背景图的区别,得到阴影位置

2)计算需要滑动的距离:遍历完整图的每一个像素点,利用 getRGB 对比完整图和缺口图哪里有差异,在有差异的时候,返回横坐标,即需要滑动的距离

3)拖动滑块,看效果
image.png

参考链接

相关文章:

常见的验证码

一、短信验证码 前端&#xff1a; 用户填写手机号&#xff0c;点击按钮发送请求用户短信得到验证码后&#xff0c;用户填写表单提交 form 表单&#xff0c;进行验证 后台&#xff1a; 随机生成几位验证码并将生成时间、手机号、验证码存储起来&#xff0c;可以存到session、…...

11. C语言标准函数库

C语言制定了一组使用方式通用的函数&#xff0c;称为C语言标准函数库&#xff0c;用于实现编程常用功能&#xff0c;标准函数库由编译器系统提供&#xff0c;并按功能分类存储在不同源代码文件中&#xff0c;调用标准库内函数时需要首先使用 #include 连接对应的源代码文件。 【…...

2016年认证杯SPSSPRO杯数学建模C题(第一阶段)如何有效的抑制校园霸凌事件的发生解题全过程文档及程序

2016年认证杯SPSSPRO杯数学建模 C题 如何有效的抑制校园霸凌事件的发生 原题再现&#xff1a; 近年来&#xff0c;我国发生的多起校园霸凌事件在媒体的报道下引发了许多国人的关注。霸凌事件对学生身体和精神上的影响是极为严重而长远的&#xff0c;因此对于这些情况我们应该…...

设计模式-抽象工厂模式实践案例

抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;它提供了一个接口&#xff0c;用于创建一系列相关或相互依赖的对象&#xff0c;而无需指定它们具体的类。抽象工厂模式是围绕一个超级工厂创建其他工厂的模式。该模式的实现涉及…...

用readproc函数读取进程的状态

概要&#xff1a; 本篇演示用readproc函数读取进程的状态 libprocps库的安装参考笔者的文章readproc.h-CSDN博客 演示所用的系统是Ubuntu22.04 一、代码 #include<stdio.h> #include<stdlib.h> #include<proc/readproc.h> int main() {struct PROCTAB *…...

在高并发、高性能、高可用 三高项目中如何设计适合实际业务场景的分布式id(一)

分布式ID组件&#xff1a;黄金链路上的关键基石 在现代分布式系统中&#xff0c;分布式ID组件无疑扮演着至关重要的角色。作为整个系统的黄金链路上的关键组件&#xff0c;它的稳定性和可靠性直接关乎到整个系统的正常运作。一旦分布式ID组件出现问题&#xff0c;黄金链路上的…...

redis最新版本在Windows系统上的安装

一、说明 这次安装操作主要是根据redis官网说明&#xff0c;一步步安装下来的&#xff0c;英语比较好的同学&#xff0c;可以直接看文章底部的超链接1&#xff0c;跳到官网按步操作即可。 目前redis的最新稳定版本为redis7.2。 二、Windows环境改造 Redis在Windows上不被官方…...

【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间

作者推荐 视频算法专题 LeetCode2045. 到达目的地的第二短时间 城市用一个 双向连通 图表示&#xff0c;图中有 n 个节点&#xff0c;从 1 到 n 编号&#xff08;包含 1 和 n&#xff09;。图中的边用一个二维整数数组 edges 表示&#xff0c;其中每个 edges[i] [ui, vi] 表…...

思维题(蓝桥杯 填空题 C++)

目录 题目一&#xff1a; ​编辑 代码&#xff1a; 题目二&#xff1a; 代码&#xff1a; 题目三&#xff1a; 代码&#xff1a; 题目四&#xff1a; 代码&#xff1a; 题目五&#xff1a; 代码&#xff1a; 题目六&#xff1a; 代码七&#xff1a; 题目八&#x…...

Meta的Llama2模型已上线!但我为何更推荐你从HuggingFace获取?还有Code Llama等你来解锁!

嘿&#xff0c;朋友们&#xff0c;今天给你们介绍一个新东西——Llama2模型&#xff0c;这是Meta&#xff08;对&#xff0c;就是Facebook那家&#xff09;推出的。 你可以直接去Llama的官网下载这个模型&#xff0c;然后按照他们GitHub上的指南来调用。 不过呢&#xff0c;我…...

CAN总线及通讯的工作原理

一、CAN总线 CAN是控制器局域网络(Controller Area Network)的简称&#xff0c; 它是由研发和生产汽车电子产品著称的德国BOSCH公司开发的&#xff0c; 并最终成为国际标准&#xff08;ISO11519&#xff09;&#xff0c;是国际上应用最广泛的现场总线之一。 二、工作原理 …...

linux下修改网卡MAC地址

我建议你使用 macchanger&#xff0c;但如果你不想使用它&#xff0c;那么可以使用另一种方法在 Linux 中更改 MAC 地址。 首先&#xff0c;使用以下命令关闭网卡&#xff1a; sudo ip link set dev enp0s31f6 down 接下来&#xff0c;使用以下命令设置新的 MAC&#xff1a;…...

47、WEB攻防——通用漏洞Java反序列化EXP生成数据提取组件安全

文章目录 序列化和反序列化的概念&#xff1a; 序列化&#xff1a;把java对象转换成字节流的过程&#xff1b;反序列化&#xff1a;把字节流恢复为java对象的过程。 对象的序列化主要有两种用途&#xff1a; 把对象的字节流永久的保存在硬盘上&#xff0c;通常存放在一个文件…...

phpstorm console xdebug

1.所有配置跟浏览器http请求一样 2.记得Current File 必须是controller文件 注意&#xff1a;如果没有出发断点&#xff0c;则echo phpinfo(),查看remote_port 和phpstorm 配置是否对上。...

Vue template到render过程

Vue template到render过程 vue的模版编译过程主要如下&#xff1a;template -> ast -> render函数&#xff08;1&#xff09;调用parse方法将template转化为ast&#xff08;抽象语法树&#xff09;&#xff08;2&#xff09;对静态节点做优化&#xff08;3&#xff09;生…...

【你也能从零基础学会网站开发】Web建站之HTML+CSS入门篇 CSS常用属性

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 CSS常用属性…...

Golang 写日志到文件

package mainimport ("log""os""time" )func main() {printLog("auto", "报警内容AA") }func printLog(filename string, content string) {t : time.Now().Format(time.DateOnly)file : filename "." t "…...

数字孪生10个技术栈:数据处理的六步骤,以获得可靠数据。

一、什么是数据处理 在数字孪生中&#xff0c;数据处理是指对采集到的实时或历史数据进行整理、清洗、分析和转化的过程。数据处理是数字孪生的基础&#xff0c;它将原始数据转化为有意义的信息&#xff0c;用于模型构建、仿真和决策支持。 数据处理是为了提高数据质量、整合数…...

运维随录实战(5)之centos搭建jenkins

一,搭建jenkins准备 下载安装jdk环境 -》版本 jdk11 下载安装maven环境 -》版本 maven 3.8.8 git -》版本 1.8.3.1 yum install git jenkins安装版本:2.414.3 下载地址:https://get.jenkins.io/war-stable/2.414.3/jenkins.war 注:jenkins版本与jdk版本有一定的对应关…...

css clip-path polygon属性实现直角梯形

2024.3.8今天我学习了如何用css实现直角梯形的效果&#xff0c; 效果&#xff1a; 具体实现原理&#xff1a; 一、需要三个div&#xff1a; 外面一个大的div&#xff0c;里面左右两个小的div 我们需要先把第一个div变成直角梯形&#xff1a; 大概是这样&#xff0c;设置好之…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

虚幻基础:角色旋转

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 移动组件使用控制器所需旋转&#xff1a;组件 使用 控制器旋转将旋转朝向运动&#xff1a;组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转&#xff1a;必须移动才能旋转&#xff0c;不移动不旋转控制器…...