当前位置: 首页 > news >正文

【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间

作者推荐

视频算法专题

LeetCode2045. 到达目的地的第二短时间

城市用一个 双向连通 图表示,图中有 n 个节点,从 1 到 n 编号(包含 1 和 n)。图中的边用一个二维整数数组 edges 表示,其中每个 edges[i] = [ui, vi] 表示一条节点 ui 和节点 vi 之间的双向连通边。每组节点对由 最多一条 边连通,顶点不存在连接到自身的边。穿过任意一条边的时间是 time 分钟。
每个节点都有一个交通信号灯,每 change 分钟改变一次,从绿色变成红色,再由红色变成绿色,循环往复。所有信号灯都 同时 改变。你可以在 任何时候 进入某个节点,但是 只能 在节点 信号灯是绿色时 才能离开。如果信号灯是 绿色 ,你 不能 在节点等待,必须离开。
第二小的值 是 严格大于 最小值的所有值中最小的值。
例如,[2, 3, 4] 中第二小的值是 3 ,而 [2, 2, 4] 中第二小的值是 4 。
给你 n、edges、time 和 change ,返回从节点 1 到节点 n 需要的 第二短时间 。
注意:
你可以 任意次 穿过任意顶点,包括 1 和 n 。
你可以假设在 启程时 ,所有信号灯刚刚变成 绿色 。
示例 1: 
输入:n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
输出:13
在这里插入图片描述

解释:
上面的左图展现了给出的城市交通图。
右图中的蓝色路径是最短时间路径。
花费的时间是:

  • 从节点 1 开始,总花费时间=0
  • 1 -> 4:3 分钟,总花费时间=3
  • 4 -> 5:3 分钟,总花费时间=6
    因此需要的最小时间是 6 分钟。
    右图中的红色路径是第二短时间路径。
  • 从节点 1 开始,总花费时间=0
  • 1 -> 3:3 分钟,总花费时间=3
  • 3 -> 4:3 分钟,总花费时间=6
  • 在节点 4 等待 4 分钟,总花费时间=10
  • 4 -> 5:3 分钟,总花费时间=13
    因此第二短时间是 13 分钟。
    示例 2:
    输入:n = 2, edges = [[1,2]], time = 3, change = 2
    输出:11
    解释:
    最短时间路径是 1 -> 2 ,总花费时间 = 3 分钟
    第二短时间路径是 1 -> 2 -> 1 -> 2 ,总花费时间 = 11 分钟

提示:

2 <= n <= 104
n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
edges[i].length == 2
1 <= ui, vi <= n
ui != vi
不含重复边
每个节点都可以从其他节点直接或者间接到达
1 <= time, change <= 103

深度优先

经过的边数相同,则行驶时间相同,等待时间也相同。所以本题等效与求严格经过边数第二少。令经过最少的边数是x,则严格第二少的边数只能是x+1或x+2。因为:到达目的地后返回一个节点,再到达目的地,经过的边数是x+2。
本问题等于与:
一,计算最少经过边数x。
二,能否经过x+1条边到达目的的。

每个节点除了记录最少边数,还要记录另外一个状态i1:
初始为0,第一次到达是变成1。加入队列。
1变2的条件:新经过的边数等于x+1。加入队列。
2不会发生的变化。
每个节点最多入队两次。估计时间复杂度是:O(n)。
目的地的i1,如果为1,则严格第二少的边数为x+1,否则为x+2。

通过边数计算时间:
如果总时间time / change 是奇数需要等待 等待时间 change - (time/change)。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) {CNeiBo2 neiBo(n, edges, false, 1);queue<pair<int,int>> que;		vector<int> vDis(n), vStatu(n);que.emplace(0,0);vStatu[0] = 1;while (que.size()){const auto [cur,curDis] = que.front();que.pop();for (const auto& next : neiBo.m_vNeiB[cur]){const int iNewDis = curDis + 1;if (0 == vStatu[next]){vDis[next] = iNewDis;vStatu[next] = 1;que.emplace(next,iNewDis);}else if ((1 == vStatu[next])&&( vDis[next]+1 == iNewDis)){vStatu[next] = 2;que.emplace(next, iNewDis);}}}const int iEdgeNum = (1 == vStatu.back()) ? (vDis.back() + 2) : (vDis.back() + 1);int iTime = 0;for (int i = 1; i <= iEdgeNum; i++){iTime += time;if ((iTime / change) & 1){if (iEdgeNum != i){iTime += (change - (iTime % change));}}}return iTime;}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}

}

int main()
{
int n, time, change;
vector<vector> edges;
{
Solution sln;
n = 5, edges = { {1,2},{1,3},{1,4},{3,4},{4,5} }, time = 3, change = 5;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(13, res);
}
{
Solution sln;
n = 2, edges = { {1,2} }, time = 3, change = 2;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(11, res);
}
}

2023年4月

class Solution {
public:
int secondMinimum(int n, vector<vector>& edges, int time, int change) {
m_vNeiB.resize(n + 1);
m_vDis.assign(n + 1,INT_MAX);
m_vDis2.assign(n + 1, INT_MAX);
for (const auto& e : edges)
{
m_vNeiB[e[0]].emplace_back(e[1]);
m_vNeiB[e[1]].emplace_back(e[0]);
}
std::queue<pair<int,int>> que;
que.emplace(1,0);
while (que.size())
{
const int iCur = que.front().first;
const int len = que.front().second;
que.pop();
for (const auto& next : m_vNeiB[iCur])
{
const int iNewLen = len + 1;
if (iNewLen >= m_vDis2[next])
{
continue;
}
que.emplace(next, iNewLen);
if (iNewLen < m_vDis[next])
{
m_vDis[next] = iNewLen;
}
else if (iNewLen != m_vDis[next])
{
m_vDis2[next] = iNewLen;
}
}
}
int tmp = m_vDis2[n];
int iRet = 0;
while (tmp–)
{
if ((iRet / change) & 1)
{
iRet += (change - iRet%change);
}
iRet += time;
}
return iRet;
}
vector<vector> m_vNeiB;
vector m_vDis;
vector m_vDis2;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:

【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间

作者推荐 视频算法专题 LeetCode2045. 到达目的地的第二短时间 城市用一个 双向连通 图表示&#xff0c;图中有 n 个节点&#xff0c;从 1 到 n 编号&#xff08;包含 1 和 n&#xff09;。图中的边用一个二维整数数组 edges 表示&#xff0c;其中每个 edges[i] [ui, vi] 表…...

思维题(蓝桥杯 填空题 C++)

目录 题目一&#xff1a; ​编辑 代码&#xff1a; 题目二&#xff1a; 代码&#xff1a; 题目三&#xff1a; 代码&#xff1a; 题目四&#xff1a; 代码&#xff1a; 题目五&#xff1a; 代码&#xff1a; 题目六&#xff1a; 代码七&#xff1a; 题目八&#x…...

Meta的Llama2模型已上线!但我为何更推荐你从HuggingFace获取?还有Code Llama等你来解锁!

嘿&#xff0c;朋友们&#xff0c;今天给你们介绍一个新东西——Llama2模型&#xff0c;这是Meta&#xff08;对&#xff0c;就是Facebook那家&#xff09;推出的。 你可以直接去Llama的官网下载这个模型&#xff0c;然后按照他们GitHub上的指南来调用。 不过呢&#xff0c;我…...

CAN总线及通讯的工作原理

一、CAN总线 CAN是控制器局域网络(Controller Area Network)的简称&#xff0c; 它是由研发和生产汽车电子产品著称的德国BOSCH公司开发的&#xff0c; 并最终成为国际标准&#xff08;ISO11519&#xff09;&#xff0c;是国际上应用最广泛的现场总线之一。 二、工作原理 …...

linux下修改网卡MAC地址

我建议你使用 macchanger&#xff0c;但如果你不想使用它&#xff0c;那么可以使用另一种方法在 Linux 中更改 MAC 地址。 首先&#xff0c;使用以下命令关闭网卡&#xff1a; sudo ip link set dev enp0s31f6 down 接下来&#xff0c;使用以下命令设置新的 MAC&#xff1a;…...

47、WEB攻防——通用漏洞Java反序列化EXP生成数据提取组件安全

文章目录 序列化和反序列化的概念&#xff1a; 序列化&#xff1a;把java对象转换成字节流的过程&#xff1b;反序列化&#xff1a;把字节流恢复为java对象的过程。 对象的序列化主要有两种用途&#xff1a; 把对象的字节流永久的保存在硬盘上&#xff0c;通常存放在一个文件…...

phpstorm console xdebug

1.所有配置跟浏览器http请求一样 2.记得Current File 必须是controller文件 注意&#xff1a;如果没有出发断点&#xff0c;则echo phpinfo(),查看remote_port 和phpstorm 配置是否对上。...

Vue template到render过程

Vue template到render过程 vue的模版编译过程主要如下&#xff1a;template -> ast -> render函数&#xff08;1&#xff09;调用parse方法将template转化为ast&#xff08;抽象语法树&#xff09;&#xff08;2&#xff09;对静态节点做优化&#xff08;3&#xff09;生…...

【你也能从零基础学会网站开发】Web建站之HTML+CSS入门篇 CSS常用属性

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 CSS常用属性…...

Golang 写日志到文件

package mainimport ("log""os""time" )func main() {printLog("auto", "报警内容AA") }func printLog(filename string, content string) {t : time.Now().Format(time.DateOnly)file : filename "." t "…...

数字孪生10个技术栈:数据处理的六步骤,以获得可靠数据。

一、什么是数据处理 在数字孪生中&#xff0c;数据处理是指对采集到的实时或历史数据进行整理、清洗、分析和转化的过程。数据处理是数字孪生的基础&#xff0c;它将原始数据转化为有意义的信息&#xff0c;用于模型构建、仿真和决策支持。 数据处理是为了提高数据质量、整合数…...

运维随录实战(5)之centos搭建jenkins

一,搭建jenkins准备 下载安装jdk环境 -》版本 jdk11 下载安装maven环境 -》版本 maven 3.8.8 git -》版本 1.8.3.1 yum install git jenkins安装版本:2.414.3 下载地址:https://get.jenkins.io/war-stable/2.414.3/jenkins.war 注:jenkins版本与jdk版本有一定的对应关…...

css clip-path polygon属性实现直角梯形

2024.3.8今天我学习了如何用css实现直角梯形的效果&#xff0c; 效果&#xff1a; 具体实现原理&#xff1a; 一、需要三个div&#xff1a; 外面一个大的div&#xff0c;里面左右两个小的div 我们需要先把第一个div变成直角梯形&#xff1a; 大概是这样&#xff0c;设置好之…...

Manz高压清洗机S11-028GCH-High Quality Cleaner 操作使用说明492页

Manz高压清洗机S11-028GCH-High Quality Cleaner 操作使用说明492页...

图像处理与视觉感知---期末复习重点(2)

文章目录 一、空间域图像增强1.1 图像增强1.2 几种变换 二、直方图2.1 直方图定义2.2 直方图均衡化2.3 离散情况2.4 例子2.5 直方图匹配2.6 例子2.7 一道例题 三、空间滤波器3.1 定义3.2 例子 四、平滑空间滤波器4.1 作用与分类4.2 线性滤波器 五、统计排序滤波器5.1 定义与分类…...

【机器学习】三要素——数据、模型、算法

机器学习三要素 数据模型模型是怎么得到的&#xff1f;算法 我 在学习过程中,对于“模型”和“算法”的概念不清晰&#xff0c;一直混淆&#xff0c;通过查阅了一些资料在此总结一下。 数据、模型与算法被称为机器学习的三要素&#xff0c;因为它们在机器学习中具有不可分割的作…...

Spring框架Bean对象的五个作用域

一、前言&#xff1a;Bean对象简介 在Spring项目中&#xff0c;那些由Spring IoC容器所管理的对象&#xff0c;称为bean。简单地讲&#xff0c;bean就是由Spring容器初始化、装配及管理的对象&#xff0c;除此之外&#xff0c;bean就与应用程序中的其他对象没有什么区别了。 而…...

IoT数据采集网关在企业应用中扮演着关键角色-天拓四方

随着物联网&#xff08;IoT&#xff09;技术的不断发展&#xff0c;越来越多的企业开始利用IoT技术实现智能化、自动化的生产和管理。在这个过程中&#xff0c;IoT数据采集网关作为连接物理世界与数字世界的桥梁&#xff0c;发挥着至关重要的作用。 IoT数据采集网关是一种硬件…...

【动态规划】完全背包

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;完全背包 &#x1f449;&#x1f3fb;…...

从零开始学习Diffusion Models: Sharon Zhou

How Diffusion Models Work 本文是 https://www.deeplearning.ai/short-courses/how-diffusion-models-work/ 这门课程的学习笔记。 文章目录 How Diffusion Models WorkWhat you’ll learn in this course [1] Intuition[2] SamplingSetting Things UpSamplingDemonstrate i…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...