当前位置: 首页 > news >正文

树状数组+离散化求逆序对超详细讲解!

树状数组+离散化求逆序对

用一个数组 w [ ] w[] w[]来记录遍历到当前数时,每个数出现的次数
由于只关心每个数前边有多少个数比他大,遍历到 i i i时,求大于 a [ i ] a[i] a[i]的数有多少个,就是对 [ a [ i ] , n ] [a[i], n] [a[i],n]求和。
之后将 a [ i ] a[i] a[i]的出现次数 w [ a [ i ] ] + 1 w[a[i]]+1 w[a[i]]+1再求后边的答案。

如果暴力来做是 O ( n 2 ) O(n^2) O(n2)的(不知道这个对不对,不过不重要)

for (int i = 1; i <= n; i++) {int cnt = 0;for (int j = a[i]; j <= n; j++) {cnt += w[j];}ans += cnt;w[a[i]]++;
}

发现即要做单点修改 w [ a [ i ] ] + 1 w[a[i]] + 1 w[a[i]]+1,又要做区间查询 ∑ j = a [ i ] n w [ j ] \sum\limits_{j=a[i]}^{n} w[j] j=a[i]nw[j],于是用树状数组维护 w [ ] w[] w[]来降低复杂度。

回顾树状数组的两个操作:区间查询 + 单点修改
q u e r y ( i ) 表示查询区间 [ 1 , i ] 的和 query(i)表示查询区间[1, i]的和 query(i)表示查询区间[1,i]的和
a d d ( i , k ) 表示将含有 a [ i ] 的点都 + k add(i, k)表示将含有a[i]的点都+k add(i,k)表示将含有a[i]的点都+k

(实际上这里说的树状数组是权值树状数组,就是记录每个数出现的次数的树状数组)

一个前提:只关心相对大小,数本身有多大我并不关心,所以可以离散化(否则数据太大的话 w [ ] w[] w[]放不下那么大的下标会爆掉)

写法1

按照每个数的大小降序排序,如果大小相等则按照位置降序排序(考虑为什么这么做?)

假设在排序后的数组中第 i i i个数的原位置为 p [ i ] p[i] p[i]树状数组维护的是,每个原位置的数是否出现。
比如:

原数组:3 2 1 5 4
下标 :1 2 3 4 5排序后:5 4 3 2 1
原位置:4 5 1 2 3遍历到第2个数4时,记录情况为:[0, 0, 0, 1, 0],即原位置为4的数已经出现了。
我们知道4的原位置为5,此时对区间[1, 5]求和,就是原位置5对应的逆序对数量。
把原位置5记录进去。遍历到第3个数3时,记录情况为:[0, 0, 0, 1, 1],原位置4 5的数已经出现了
知道3的原位置为1,此时对区间[1, 1]求和,就是原位置1对应逆序对的数量。
把原位置1记录进去。遍历到第4个数2时,记录情况为:[1, 0, 0, 1, 1],原位置1 4 5的数已经出现了
知道2的原位置为2,此时对区间[1, 2]求和,就是原位置2对应逆序对的数量。
把原位置2记录进去。遍历到第5个数1时,记录情况为:[1, 1, 0, 1, 1],原位置1 2 4 5的数已经出现了
知道1的原位置为3,此时对区间[1, 3]求和,就是原位置3对应逆序对的数量。
把原位置3记录进去。

看懂这一丁点就行,下边是一顿胡扯,可以不看了


注意:以下所有情况都在排好序的数组中进行!!!

现在来考虑两个情况

1. 当前数是唯一的,不考虑相同数位置降序排序的情况

记第 i 个数为 a [ i ] , 排序前位置为 p [ i ] 记第i个数为a[i], 排序前位置为p[i] 记第i个数为a[i],排序前位置为p[i]
要查询这个位置对应的逆序对数量
因为我们已经按照降序进行了排序,就变为查询 位置在 p [ i ] p[i] p[i]之前且大于 a [ i ] a[i] a[i]的数的个数
对应到排序后的数组中就是:
  前 i − 1 i - 1 i1个数中原位置在 p [ i ] p[i] p[i]之前的数。
  因为排序已经确保了前 i − 1 i - 1 i1个数都是比 a [ i ] a[i] a[i]大的数,现在只需要在前 i − 1 i - 1 i1个数中找到位置在 p [ i ] p[i] p[i]前的数就可以了

比他大的数在排序前只有两种情况:在他前边/在他后边
只有 (排序前在他前边) 的数才会构成逆序对,在他后边的数不会构成逆序对

再次强调,因为是降序排序,故已经确保了 (遍历到第 i i i个数时已经记录出现的数) 都是大于 a [ i ] a[i] a[i]的。

那么对于第 i i i个数,(比 a [ i ] a[i] a[i]大) 且 (在 p [ i ] p[i] p[i]之前出现) 的数的个数,实际上就是已经记录出现了的数的个数,即 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]的和。求区间 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]的和,就是 q u e r y ( p [ i ] ) query(p[i]) query(p[i])
最后将这个位置的数记为出现, a d d ( p [ i ] , 1 ) add(p[i], 1) add(p[i],1)

2. 如果数不唯一

数不唯一的话按照位置降序排序

考虑一下,假设已经按照位置进行了降序排序
当前数为 a [ i ] a[i] a[i],位置 p [ i ] p[i] p[i]
排序后数组中在当前数之前的相同数 a [ j ] a[j] a[j],对应位置 p [ j ] p[j] p[j]一定在 p [ i ] p[i] p[i]后边
那么 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]求和时,是这样的一个区间:
1 2 3 4 ... p[i] ... p[j] ...
就不会把相同的数也算到逆序对中,这样就避免了重复计算。

总结一下核心:降序排序后每个位置 i i i要查询的区间和 [ 1 , p [ i ] ] [1,p[i]] [1,p[i]],是出现在原数组位置 p [ i ] p[i] p[i]之前且大于当前数的元素个数

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>#define debug(x) std::cerr << "#x" << " = " << x << ' '
#define DEBUG(x) std::cerr << "#x" << " = " << x << std::endltypedef long long ll;
using namespace std;const int N_MAX = 500000 + 10;int n;
int tr[N_MAX];
struct Node {int v, p;bool operator < (const Node& other) const {if (v != other.v) return v > other.v;return p > other.p;}
}a[N_MAX];int lowbit(int x) {return x & -x;
}void inc(int x, int v) {for (int i = x; i <= n; i += lowbit(i)) tr[i] += v;
}ll calc(int x) {ll sum = 0ll;for (int i = x; i >= 1; i -= lowbit(i)) sum += tr[i];return sum;
}int main() {cin >> n;for (int i = 1; i <= n; i++) cin >> a[i].v, a[i].p = i;sort(a + 1, a + n + 1);ll ans = 0ll;for (int i = 1; i <= n; i++) {ans += calc(a[i].p);inc(a[i].p, 1);}printf("%lld\n", ans);return 0;
}

相关文章:

树状数组+离散化求逆序对超详细讲解!

树状数组离散化求逆序对 用一个数组 w [ ] w[] w[]来记录遍历到当前数时&#xff0c;每个数出现的次数 由于只关心每个数前边有多少个数比他大&#xff0c;遍历到 i i i时&#xff0c;求大于 a [ i ] a[i] a[i]的数有多少个&#xff0c;就是对 [ a [ i ] , n ] [a[i], n] [a[i…...

《解密云计算:企业之选》

前言 在当今数字化时代&#xff0c;企业面临着巨大的数据处理压力和信息化需求&#xff0c;传统的IT架构已经无法满足日益增长的业务需求。在这样的背景下&#xff0c;越来越多的企业开始转向云计算&#xff0c;以实现灵活、高效和可扩展的IT资源管理和利用。 云计算 云计算是…...

地址分词 | EXCEL批量进行地址分词,标准化为十一级地址

一 需求 物流需要对用户输入地址进行检查&#xff0c;受用户录入习惯地址可能存在多种问题。 地址标准化是基于地址引擎和地址大数据模型&#xff0c;自动将地址信息标准化为省、市、区市县、街镇、小区、楼栋、单元、楼层、房屋、房间等元素&#xff0c;补充层级缺失数据、构建…...

KubeSphere平台安装系列之二【Linux单节点部署KubeSphere】(2/3)

**《KubeSphere平台安装系列》** 【Kubernetes上安装KubeSphere&#xff08;亲测–实操完整版&#xff09;】&#xff08;1/3&#xff09; 【Linux单节点部署KubeSphere】&#xff08;2/3&#xff09; 【Linux多节点部署KubeSphere】&#xff08;3/3&#xff09; **《KubeS…...

网络安全: Kali Linux 使用 docker-compose 部署 openvas

目录 一、实验 1.环境 2.Kali Linux 安装docker与docker-compose 3.Kali Linux 使用docker-compose方式部署 openvas 4. KaliLinux 使用openvas 二、问题 1. 信息安全漏洞库 2.信息安全漏洞共享平台 3.Windows 更新指南与查询 4.CVE 查询 5.docker-compose 如何修改o…...

【学习考试心得】在誉天学习考试RHCE9.0的体验

作为华中第一位参加RHCE9.0线上考试的考生&#xff0c;很荣幸能来写这个心得&#xff0c;和大家分享一下线上的考试的一些体验。 一、学习体验 首先在红帽课程的学习中&#xff0c;跟着杨峰老师的脚步&#xff0c;整个学习过程中都非常有意思。杨峰老师充满磁性的声音和小王老师…...

Flip Clock(not good)

最近体验了一下iOS的翻页时钟app&#xff0c;很想自己做一个&#xff0c;但是效果不好 public class main {public static void main(String[] args) {//psvmnew MyFrame();} }import javax.swing.*; import java.awt.*; import java.io.File; import java.io.IOException; im…...

目标检测——摩托车头盔检测数据集

一、简介 首先&#xff0c;摩托车作为一种交通工具&#xff0c;具有高速、开放和稳定性差的特点&#xff0c;其事故发生率高&#xff0c;伤亡率排在机动车辆损伤的首位。因此&#xff0c;摩托车乘员头盔对于保护驾乘人员头部安全至关重要。在驾乘突发状况、人体受冲击时&#…...

Windows 安装 Xinference

Windows 安装 Xinference 0. 引言1. 创建虚拟环境2. 安装 pytorch3. 安装 llama_cpp_python4. 安装 chatglm-cpp5. 安装 Xinference6. 设置 model 路径7. 启动 Xinference8. 查看 Cluster Information 0. 引言 Xorbits Inference&#xff08;Xinference&#xff09;是一个性能…...

静态时序分析:SDC约束命令set_case_analysis详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 目录 指定值 指定端口/引脚列表 简单使用 set_case_analysis命令用于对电路进行特定模式的设定&#xff0c;例如对于一个工作在正常模式下的芯片&#xff0c;…...

C++ · 代码笔记4 ·继承与派生

目录 前言010继承与派生简单例程020多级继承030使用using关键词更改访问权限040隐藏050派生类与基类成员函数同名时不构成重载060使用多级继承展示成员变量在内存中的分布情况071派生类在函数头调用基类构造函数072构造函数调用顺序080构造函数与析构函数的调用顺序091多重继承…...

解决uni-app中使用webview键盘弹起遮挡input输入框问题

这个平平无奇的回答&#xff0c;可能是全网最靠谱的解决方案。 这里我用的是vue3 setup .vue文件的方式 <view> <web-view :fullscreen"false" :webview-styles"{top: statusBarHeight40,height:height,progress: {color: green,height:1px } }"…...

Java注解介绍

Java注解 注解介绍元注解RetentionTargetDocumentedInherited接口类测试结果 注解介绍 Java注解&#xff08;Annotation&#xff09;是一种元数据&#xff08;Metadata&#xff09;的形式&#xff0c;它可以被添加到Java代码中的类、方法、变量、参数等元素上&#xff0c;以提…...

万字详解,Java实现低配版线程池

文章目录 1.什么是线程池2.线程池的优势3.原理4.代码编写4.1 阻塞队列4.2 ThreadPool线程池4.3 Worker工作线程4.4 代码测试 5. 拒绝策略5.1 抽象Reject接口5.2 BlockingQueue新增tryPut方法5.3 修改ThreadPool的execute方法5.4 ThreadPool线程池构造函数修改5.5 拒绝策略实现1…...

挂耳式蓝牙耳机哪家的好用?购买耳机前必须了解的几大要点

随着健康意识的提升&#xff0c;越来越多的人开始热衷于运动。运动不仅能够增强体质&#xff0c;对于我们这些忙碌的上班族而言&#xff0c;它也是一种极佳的减压方式。经过一天的辛勤工作&#xff0c;能够在户外跑步&#xff0c;让汗水带走压力&#xff0c;实在是一种享受。在…...

CSS文本属性

CSS文本属性 1.文本颜色2.文本间距3. 文本修饰4 .文本缩进5.文本对齐_水平6.行高7. vertical-align 1.文本颜色 属性名&#xff1a;color作用&#xff1a;控制文字的颜色。可选值&#xff1a; 颜色名rgb或rgbaHEX或HEXA &#xff08;十六进制&#xff09;HSL或HSLA 开发中常用…...

MySQL篇—执行计划之覆盖索引Using index和条件过滤Using where介绍(第三篇,总共三篇)

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…...

最短路径(2.19)

目录 1.网络延迟时间 弗洛伊德算法 迪杰斯特拉算法 2. K 站中转内最便宜的航班 3.从第一个节点出发到最后一个节点的受限路径数 4.到达目的地的方案数 1.网络延迟时间 有 n 个网络节点&#xff0c;标记为 1 到 n。 给你一个列表 times&#xff0c;表示信号经过 有向 边的…...

vue 总结

1.vue 的生命周期 1. es6 2. vue 基本属性指令 <template><div><!--<h1>vue基本指令的使用方式</h1><a :href"url">v-bind使用链接</a><img :src"srcUrl" /><div>解决闪烁问题<p v-cloak>{{…...

深入理解TCP/IP协议:互联网通信的核心

深入理解TCP/IP协议&#xff1a;互联网通信的核心 在数字化时代&#xff0c;TCP/IP协议是支撑全球互联网通信的基石。它不仅负责数据的传输和路由&#xff0c;还确保了信息传递的准确性和完整性。本文将深入探讨TCP/IP协议的工作原理、结构以及它在网络编程中的应用。 TCP/IP…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...