AVL树讲解
AVL树
- 1. 概念
- 2. AVL节点的定义
- 3. AVL树插入
- 3.1 旋转
- 4.AVL树的验证
1. 概念
- AVL树是一种自平衡二叉搜索树。它的每个节点的左子树和右子树的高度差(平衡因子,我们这里按右子树高度减左子树高度)的绝对值不超过1。
- AVL的左子树和右子树都是AVL树。
- 比起二叉搜索树AVL树可以很好的优化二叉搜索树最坏的情况,使查询的效率达到O(log2 N)。
2. AVL节点的定义
和搜索二叉树节点相比,AVL树节点多了一个父节点和平衡因子(不是必要)需要维护。
template<class T>
typedef struct AVLTreeNode
{AVLTreeNode(const T& data):_pLeft(nullptr),_pRight(nullptr),_pParent(nullptr),_data(data),_bf(0){};//左节点、右节点、父节点AVLTreeNode<T>* _pLeft;AVLTreeNode<T>* _pRight;AVLTreeNode<T>* _pParent;T _data;//平衡因子int bf;
};
3. AVL树插入
和搜索二叉树的插入操作相比较,AVL树的插入需要多维护父节点和平衡因子。维护父节点比较简单,我们需要学习的是维护平衡因子。
当我们按照搜索二叉树的逻辑插入一个节点后,在插入这个节点之前父节点的平衡因子可能是-1/0/1这三种,如果该节点插入到父节点的左边需要将平衡因子减1,插入到右边则加1。所以插入之后平衡因子有这几种情况±1/0/±2。如果是±1,那么需要继续判断上面节点的平衡因子、如果是0,那么不需要判断了、如果是±2,那么就需要进行旋转操作。
3.1 旋转
我们先说结论:1、旋转之后节点所在子树的高度会回到插入之前。2、旋转不会对上面节点平衡因子产生影响。
- 右单旋
初始情况:

// 右单旋void RotateR(Node* pParent){Node* parent = pParent->_parent;//变成局部的根Node* pParentL = pParent->_left;Node* pParentR = pParentL->_right;if (pParent == _proot)_proot = pParentL;pParent->_left = pParentR;if (pParentR)pParentR->_parent = pParent;pParentL->_left = pParent;pParent->_parent = pParentL;pParentL->_parent = parent;//只需要修改pParent和pParentL的平衡因子pParent->_bf = 0;pParentL->_bf = 0;return;}
旋转之后情况

- 左单旋
初始情况:

// 左单旋void RotateL(Node* pParent){Node* parent = pParent->_parent;//变成局部的根Node* pParentR = pParent->_right;Node* pParentL = pParentR->_left;//如果pParnet为根,则要修改根if (pParent == _proot)_proot = pParentR;pParent->_right = pParentL;if (pParentL)pParentL->_parent = pParent;pParentR->_left = pParent;pParent->_parent = pParentR;pParentR->_parent = parent;//只需要修改pParent和pParentR的平衡因子pParent->_bf = 0;pParentR->_bf = 0;return;}
旋转之后的情况:

- 左右双旋
初始情况(插入可以插入到左边或右边,情况不同平衡因子也会不同):

// 左右双旋void RotateLR(Node* pParent){Node* pParentL = pParent->_left;Node* pParentLR = pParentL->_right;int bf = pParentLR->_bf;RotateL(pParentL);RotateR(pParent);if (bf == 0){pParent->_bf = 0;pParentL->_bf = 0;pParentLR->_bf = 0;}else if (bf == 1){pParentL->_bf = -1;pParentLR->_bf = 0;pParent->_bf = 0;}else if (bf == -1){pParentL->_bf = 0;pParent->_bf = 1;pParentLR->_bf = 0;}return;}
旋转之后的情况:

- 右左双旋转
初始情况:

// 右左双旋void RotateRL(Node* pParent){Node* pParnetR = pParent->_right;Node* pParentRL = pParnetR->_left;int bf = pParentRL->_bf;RotateR(pParnetR);RotateL(pParent);if (bf == 0){pParent->_bf = 0;pParnetR->_bf = 0;pParentRL->_bf = 0;}else if (bf == -1){pParent->_bf = 0;pParnetR->_bf = 1;pParentRL->_bf = 0;}else if (bf == 1){pParent->_bf = -1;pParnetR->_bf = 0;pParentRL->_bf = 0;}return;}
旋转之后的情况:

4.AVL树的验证
- 验证为二叉搜索树
中序遍历得到有序的序列就可以证明为二叉搜索树。 - 验证为平衡树
看平衡因子
bool _IsBalance(Node* root, int& height){if (root == nullptr){height = 0;return true;}int leftHeight = 0, rightHeight = 0;if (!_IsBalance(root->_left, leftHeight) || !_IsBalance(root->_right, rightHeight)){return false;}if (abs(rightHeight - leftHeight) >= 2){cout <<root->_kv.first<<"不平衡" << endl;return false;}if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first <<"平衡因子异常" << endl;return false;}height = leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;return true;}

相关文章:
AVL树讲解
AVL树 1. 概念2. AVL节点的定义3. AVL树插入3.1 旋转 4.AVL树的验证 1. 概念 AVL树是一种自平衡二叉搜索树。它的每个节点的左子树和右子树的高度差(平衡因子,我们这里按右子树高度减左子树高度)的绝对值不超过1。AVL的左子树和右子树都是AV…...
20240308-1-校招前端面试常见问题CSS
校招前端面试常见问题【3】——CSS 1、盒模型 Q:请简述一下 CSS 盒模型? W3C 模式:盒子宽widthpaddingbordermargin 怪异模式:盒子宽widthmargin Q:inline、block、inline-block 元素的区别? inline&am…...
linux系统简述docker
简述docker docker理念docker三要素docker平台架构docker运行的基本流程 docker理念 一次镜像,处处运行 基于go语言实现的项目 解决了运行环境和配置问题的软件容器,方便做持续集成并有助于整体发布的容器虚拟化技术 能够使硬件、操作系统和应用程序三者…...
【论文阅读】Mamba:选择状态空间模型的线性时间序列建模(一)
文章目录 Mamba:选择状态空间模型的线性时间序列建模介绍状态序列模型选择性状态空间模型动机:选择作为一种压缩手段用选择性提升SSM 选择性SSM的高效实现先前模型的动机选择扫描总览:硬件感知状态扩展 Mamba论文 Mamba:选择状态空间模型的线性时间序列建…...
漏洞复现-蓝凌LandrayOA系列
蓝凌OA系列 🔪 是否利用过 优先级从高到低 发现日期从近到远 公司团队名_产品名_大版本号_特定小版本号_接口文件名_漏洞类型发现日期.载荷格式LandrayOA_Custom_SSRF_JNDI漏洞 LandrayOA_sysSearchMain_Rce漏洞 LandrayOA_Custom_FileRead漏洞...
计算机网络 路由算法
路由选择协议的核心是路由算法,即需要何种算法来获得路由表中的各个项目。 路由算法的目的很明显,给定一组路由器以及连接路由器的链路,路由算法需要找到一条从源路由器到目的路由器的最佳路径,通常,最佳路径是由最低…...
【C++ 学习】构造函数详解!!!
1. 类的6个默认成员函数的引入 ① 如果一个类中什么成员都没有,简称为空类。 ② 空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员函数。 ③ 默认成员函数:用户没有显式实现&…...
【LeetCode】72. 编辑距离(中等)——代码随想录算法训练营Day55
题目链接:72. 编辑距离 题目描述 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符删除一个字符替换一个字符 示例 1: 输入:w…...
关于手机是否支持h264的问题的解决方案
目录 现象 原理 修改内容 现象 开始以为是手机不支持h264的编码 。机器人chatgpt一通乱扯。 后来检查了下手机,明显是有h264嘛。 终于搞定,不枉凌晨三点起来思考 原理 WebRTC 默认使用的视频编码器是VP8和VP9,WebRTC内置了这两种编码器…...
借助Aspose.html控件,在 Java 中将 URL 转换为 PDF
如果您正在寻找一种将实时 URL 中的网页另存为 PDF文档的方法,那么您来对地方了。在这篇博文中,我们将学习如何使用 Java 将 URL 转换为 PDF。从实时 URL转换HTML网页可以像任何其他文档一样保存所需的网页以供离线访问。将网页保存为 PDF 格式可以轻松突…...
数据结构——堆的应用 堆排序详解
💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…...
Sftp服务器搭建(linux)
Sftp服务器搭建(linux) 一、基本工作原理 FTP的基本工作原理如下: 1)建立连接:客户端与服务器之间通过TCP/IP建立连接。默认情况下,FTP使用端口号21作为控制连接的端口。 2)身…...
Neo4j 新手教程 环境安装 基础增删改查 python链接 常用操作 纯新手向
Neo4j安装教程🚀 目前在学习知识图谱的相关内容,在图数据库中最有名的就是Neo4j,为了降低入门难度,不被网上很多华丽呼哨的Cypher命令吓退,故分享出该文档,为自己手动总结,包括安装环境,增删改查…...
PyTorch2.0 环境搭建详细步骤(Nvidia显卡)
Step 1 、查看显卡驱动版本 Step2、下载CUDA 11.7 或者11.8(我自己用的这个)也行,稍后我会贴出来版本匹配对应表 https://developer.nvidia.com/cuda-toolkit-archive Step3、下载CUDNN cuDNN 9.0.0 Downloads | NVIDIA Developer Step4、安装anconda&…...
Python逆向:pyc字节码转py文件
一、 工具准备 反编译工具:pycdc.exe 十六进制编辑器:010editor 二、字节码文件转换 在CTF中,有时候会得到一串十六进制文件,通过010editor使用查看后,怀疑可能是python的字节码文件。 三、逆向反编译 将010editor得到…...
提示词工程技术:类比、后退、动态少样本、自动生成CoT
类比提示 “类比提示”利用类比推理的概念,鼓励模型生成自己的例子和知识,从而实现更灵活和高效的解决问题。 后退提示 “后退提示”专注于抽象,引导模型推导出高级概念和原理,进而提高其推理能力。 使用一个基本的数学问题来…...
【深度学习笔记】6_5 RNN的pytorch实现
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 6.5 循环神经网络的简洁实现 本节将使用PyTorch来更简洁地实现基于循环神经网络的语言模型。首先,我们读取周杰伦专辑歌词…...
Linux at任务调度命令行编辑错误
错误: 在at任务调度命令行语句编辑错误时,按backspace进行删除无法进行。 解决方案: 请按Ctrlbackspace进行删除,即可解决。...
lua与C++粘合层框架
lua调用C++ 在lua中是以函数指针的形式调用函数, 并且所有的函数指针都必须满足如下此种类型: typedef int (*lua_CFunction) (lua_State *L); 也就是说, 偶们在C++中定义函数时必须以lua_State为参数, 以int为返回值才能被Lua所调用. 但是不要忘记了, 偶们的lua_State是支…...
POST 请求,Ajax 与 cookie
POST 请求则需要设置RequestHeader告诉后台传递内容的编码方式以及在 send 方法里传入对应的值 xhr.open("POST", url, true); xhr.setRequestHeader(("Content-Type": "application/x-www-form-urlencoded")); xhr.send("key1value1&…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
高抗扰度汽车光耦合器的特性
晶台光电推出的125℃光耦合器系列产品(包括KL357NU、KL3H7U和KL817U),专为高温环境下的汽车应用设计,具备以下核心优势和技术特点: 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计,确保在…...
