【NLP相关】attention的代码实现
【NLP相关】attention的代码实现
Attention模型是现今机器学习领域中非常热门的模型之一,它可以用于自然语言处理、计算机视觉、语音识别等领域。本文将介绍Attention模型的代码实现。
1. attention机制的原理
首先,我们需要了解Attention模型的基本概念。Attention是一种机制,它可以用于选择和加权输入序列的不同部分,从而使得模型更加关注那些对输出结果更加重要的部分。在自然语言处理任务中,输入序列通常是由一些词语组成的,而输出序列通常是一个标签或者一句话。Attention模型可以帮助我们更好地理解输入序列中的每一个词语对输出序列的影响。关于attention的详细介绍,可以参见我的另一篇博客:深入理解attention机制(产生、发展、原理、应用和代码实现)
2. attention机制的代码实现
(1)基于PyTorch实现
接下来,我们将介绍如何使用PyTorch实现一个基本的Attention模型。我们假设输入序列是一个由nnn个词语组成的序列,输出序列是一个由mmm个标签组成的序列。首先,我们需要定义一个包含两个线性变换的网络层,分别用于将输入序列和输出序列的维度映射到一个相同的维度空间。代码如下所示:
class AttentionLayer(nn.Module):def __init__(self, input_size, output_size):super(AttentionLayer, self).__init__()self.input_proj = nn.Linear(input_size, output_size, bias=False)self.output_proj = nn.Linear(output_size, output_size, bias=False)
在定义完网络层之后,我们需要实现Attention的计算过程。在本文中,我们将使用加性Attention的计算方式。具体来说,我们需要计算每一个输入词语与输出标签之间的相似度,然后将相似度进行归一化处理,最终得到一个由nnn个归一化的权重组成的向量。代码如下所示:
def forward(self, inputs, outputs):inputs = self.input_proj(inputs) # (batch_size, n, input_size) -> (batch_size, n, output_size)outputs = self.output_proj(outputs) # (batch_size, m, output_size) -> (batch_size, m, output_size)scores = torch.bmm(inputs, outputs.transpose(1, 2)) # (batch_size, n, output_size) * (batch_size, output_size, m) -> (batch_size, n, m)weights = F.softmax(scores, dim=1) # (batch_size, n, m)return weights
在代码中,我们首先将输入序列和输出序列分别进行线性变换,并计算它们之间的相似度。然后,我们使用softmax函数将相似度进行归一化处理,从而得到一个n×mn \times mn×m的归一化权重矩阵。
最后,我们可以将Attention计算的结果与输入序列相乘,得到一个由mmm个加权输入向量组成的向量。代码如下所示:
class AttentionLayer(nn.Module):def __init__(self, input_size, output_size):super(AttentionLayer, self).__init__()self.input_proj = nn.Linear(input_size, output_size, bias=False)self.output_proj = nn.Linear(output_size, output_size, bias=False)def forward(self, inputs, outputs):inputs = self.input_proj(inputs) # (batch_size, n, input_size) -> (batch_size, n, output_size)outputs = self.output_proj(outputs) # (batch_size, m, output_size) -> (batch_size, m, output_size)scores = torch.bmm(inputs, outputs.transpose(1, 2)) # (batch_size, n, output_size) * (batch_size, output_size, m) -> (batch_size, n, m)weights = F.softmax(scores, dim=1) # (batch_size, n, m)context = torch.bmm(weights.transpose(1, 2), inputs) # (batch_size, m, n) * (batch_size, n, output_size) -> (batch_size, m, output_size)return context
在代码中,我们将归一化权重矩阵和输入序列进行矩阵乘法运算,得到一个由mmm个加权输入向量组成的向量。这个向量就是Attention模型的输出结果。
至此,我们已经完成了Attention模型的代码实现。当然,这只是一个基本的Attention模型,它还可以通过增加更多的层来提升性能,比如Multi-Head Attention等。同时,在使用Attention模型时还需要考虑到一些细节问题,比如输入序列的长度不一定相同、输出序列的长度也不一定相同等。因此,Attention模型的具体实现方式还需要根据具体的任务来进行设计和调整。
(2)TensorFlow实现
在TensorFlow中,我们可以使用tf.keras.layers.Attention层来实现Attention机制。下面,我们将使用一个示例来演示如何在TensorFlow中使用Attention机制。
首先,我们需要导入必要的库和数据集。在这个示例中,我们将使用IMDB电影评论情感分类数据集,这是一个二元分类任务,我们需要将评论分为积极或消极两种情感。
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, LSTM, Bidirectional, Attention
from tensorflow.keras.models import Model
import numpy as np# 加载IMDB数据集
max_features = 20000
maxlen = 200
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = pad_sequences(x_train, padding='post', maxlen=maxlen)
x_test = pad_sequences(x_test, padding='post', maxlen=maxlen)
接下来,我们将使用Keras函数式API构建一个双向LSTM模型,并在其中加入Attention层。
# 构建模型
input_layer = Input(shape=(maxlen,))
embedding_layer = Embedding(max_features, 128)(input_layer)
lstm_layer = Bidirectional(LSTM(64, return_sequences=True))(embedding_layer)
attention_layer = Attention()([lstm_layer, lstm_layer])
flatten_layer = Flatten()(attention_layer)
output_layer = Dense(1, activation='sigmoid')(flatten_layer)
model = Model(inputs=input_layer, outputs=output_layer)# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
在这个模型中,我们首先使用Embedding层将输入序列转换为向量表示,然后将其输入到一个双向LSTM层中。接下来,我们使用Attention层将LSTM层的输出与自身进行注意力计算,得到每个时间步的权重。最后,我们将加权后的输出进行展平,并通过一个全连接层得到二元分类的输出。
最后,我们可以训练和评估这个模型。
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=5, validation_data=(x_test, y_test))# 评估模型
loss, accuracy = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', accuracy)
3. attention模型的应用
(1)机器翻译
机器翻译是自然语言处理领域的一个重要任务,而Attention模型在机器翻译中的应用尤为广泛。在传统的机器翻译模型中,通常使用固定长度的向量来表示输入序列,并将其输入到一个循环神经网络(RNN)中进行处理。但是,这种方法存在一个问题,就是当输入序列很长时,模型会出现信息丢失的情况,无法捕捉到关键的上下文信息。为了解决这个问题,Attention模型被引入到了机器翻译中。在Attention模型中,我们不仅考虑到输入序列中每个词的信息,还将每个词的权重也作为输入,使得模型可以更加关注到重要的词汇信息。通过这种方式,Attention模型可以更加准确地进行翻译,并且在处理长文本时也可以避免信息丢失的问题。
(2)文本分类
在文本分类中,Attention模型可以帮助我们更好地捕捉到文本中的关键信息。传统的文本分类模型通常使用固定长度的向量来表示输入文本,并将其输入到一个全连接层中进行分类。但是,这种方法也存在信息丢失的问题,无法捕捉到文本中的重要信息。为了解决这个问题,Attention模型被引入到了文本分类中。在Attention模型中,我们将每个词的向量表示作为输入,并使用注意力机制来确定每个词的重要程度。通过这种方式,Attention模型可以更加准确地分类文本,并且在处理长文本时也可以避免信息丢失的问题。
(3)图像标注
在图像标注中,Attention模型可以帮助我们更好地理解图像中的内容,并生成更加准确的图像描述。传统的图像标注模型通常使用固定长度的向量来表示图像,并将其输入到一个循环神经网络中进行处理。但是,这种方法也存在信息丢失的问题,无法捕捉到图像中的重要信息。为了解决这个问题,Attention模型被引入到了图像标注中。在Attention模型中,我们将每个图像区域的向量表示作为输入,并使用注意力机制来确定每个区域的重要程度。通过这种方式,Attention模型可以更加准确地理解图像中的内容,并生成更加准确的图像描述。此外,Attention模型还可以帮助我们在图像标注中实现多模态输入,即将图像和文本结合起来进行标注,从而提高标注的准确性。
(4)文本生成
在文本生成任务中,Attention模型可以帮助我们更好地生成连贯、准确的文本。传统的文本生成模型通常使用循环神经网络来生成文本,但是在生成过程中,模型可能会出现重复、模糊等问题。为了解决这个问题,Attention模型被引入到了文本生成中。在Attention模型中,我们不仅使用循环神经网络来生成文本,还将每个词的向量表示作为输入,并使用注意力机制来确定每个词的生成概率。通过这种方式,Attention模型可以更加准确地生成文本,并且避免出现重复、模糊等问题。
相关文章:

【NLP相关】attention的代码实现
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...

凌恩生物资讯
凌恩生物转录组项目包含范围广,项目经验丰富,人均10年以上项目经验,其中全长转录组测序研究基因结构已经成为发文章的趋势,研究物种包括高粱、玉米、拟南芥、鸡、人和小鼠、毛竹、棉花等。凌恩生物提供专业的全长转录组测序及分析…...
Leetcode 148. 排序链表(二路归并)
题目: 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 解法一: 递归解法,自顶向下 链表版二路归并排序(升序,递归版),稳定排序 时间复杂度…...

记录Paint部分常用的方法
Paint部分常用的方法1、实例化之后Paint的基本配置2、shader 和 ShadowLayer3、pathEffect4、maskFilter5、colorFilter6、xfermode1、实例化之后Paint的基本配置 Paint.Align Align指定drawText如何将其文本相对于[x,y]坐标进行对齐。默认为LEFTPaint.Cap Cap指定了笔画线和路…...

ArrayList集合底层原理
ArrayList集合底层原理ArrayList集合底层原理1.介绍2.底层实现3.构造方法3.1集合的属性4.扩容机制5.其他方法6.总结ArrayList集合底层原理 1.介绍 ArrayList是List接口的可变数组的实现。实现了所有可选列表操作,并允许包括 null 在 内的所有元素。 每个 Array…...

内网部署swagger快解析映射方案发布让外网访问
计算机业内人士对于swagger并不陌生, 不少人选择用swagger做为API接口文档管理。Swagger 是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTful 风格的 Web 服务。总体目标是使客户端和文件系统作为服务器以同样的速度来更新文件的方法&#x…...

全网最全整理,自动化测试10种场景处理(超详细)解决方案都在这......
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 自动化工作流程 自动…...
【c++】指针的学习
指针是C中非常重要的概念,理解指针的使用可以使程序更高效,并且可以处理更加复杂的数据结构。 指针是一个变量,它存储了另一个变量的地址。通过指针访问这个变量可以提高程序的效率,尤其是在处理大型数据结构时。 在C中࿰…...

华为OD机试题,用 Java 解【水仙花数】问题
华为Od必看系列 华为OD机试 全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典使用说明 参加华为od机试,一定要注意不…...

【Linux】-- 基本指令
目录 用户管理 adduser passwd userdel pwd ls指令 -l -a -d -F -r -t -R -1 which alias ll ls -n cd cd - cd ~ touch -d stat mkdir -p rmdir rm -r -f man cp 编辑 -r -f mv cat -n tac more less -N head tail | 管道 dat…...

JavaScript 中的 String 类型 模板字面量定义字符串
ECMAScript 6新增了使用模板字面量定义字符串的能力。与使用单引号或双引号不同,模板字面量保留换行字符,可以跨行定义字符串: let str1 早起的年轻人\n喜欢经常跳步;let str2 早起的年轻人喜欢经常跳步;console.log(str1);// 早起的年轻人…...

我国防疫数据报告,2022年广东花费711亿,北京人均支出第一
哈喽大家好,2023年已经过去一段时间了,随着防疫策略的调整,小伙伴们是不是开始到处旅行购物了呢?当然了,对于自身的健康情况小伙伴们还是要多多关注,不要松懈。随着春节过后有序复工复产,各地纷…...

OpenCV-Python学习(22)—— OpenCV 视频读取与保存处理(cv.VideoCapture、cv.VideoWriter)
1. 学习目标 学习 OpenCV 的视频的编码格式 cv.VideoWriter_fourcc;学会使用 OpenCV 的视频读取函数 cv.VideoCapture;学会使用 OpenCV 的视频保存函数 cv.VideoWriter。 2. cv.VideoWriter_fourcc()常见的编码参数 2.1 参数说明 参数说明cv.VideoWr…...
2023-03-05力扣每日一题
链接: https://leetcode.cn/problems/triples-with-bitwise-and-equal-to-zero/ 题意: 模拟一个摩天轮,四个舱,每个舱最多四人,给一个数组,表示摩天轮每切换一次座舱会来多少人排队(人不会走…...

真正的IT技术男是什么样的?
我们经常会听到很多对IT男士的调侃称呼,“屌丝”、“宅男”,会逗的大家捧腹大笑。但是,大家要不要以为称呼IT男是“屌丝”、“宅男”,就当真以为他们是这样了。今天,青鸟学姐就带大家一起来了解一下,真正的…...

在函数中,用指针接收就可以改变相应的内容吗??
作者:小树苗渴望变成参天大树 作者宣言:认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧! 我们在不管指针那篇博客,还是在函数那篇博客中,我都给大家讲解过…...

Java+ElasticSearch+Pytorch实现以图搜图
以图搜图,涉及两大功能:1、提取图像特征向量。2、相似向量检索。第一个功能我通过编写pytorch模型并在java端借助djl调用实现,第二个功能通过elasticsearch7.6.2的dense_vector、cosineSimilarity实现。一、准备模型创建demo.py,输…...
【C语言学习笔记】:指针
指针的概念 指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。要搞清一个指针需要搞清指针的四方面的内容:指针的类型,指针所指向的类型,指针的值或者叫指针所指向的内存区,还有指针本身所占据的内…...

微信小程序搭建流程
一、申请微信开发者账号虽然开发微信小程序可以使用工具提供的测试号,但是测试号提供的功能极为有限,而且使用测试号开发的微信小程序不能上架发布。因此说我们想要开发一个可以上架的微信小程序,首先必须要申请微信开发者账号。大家尽可放心…...

嵌入式 Linux进程间的通信--信号
目录 信号 信号的概述 信号类型 信号发送 1、kill 函数 2、raise函数 3、pause函数 信号处理 可以结合上一篇文章一起看: 嵌入式 Linux进程之间的通信_丘比特惩罚陆的博客-CSDN博客 信号 信号的概述 软中断信号(signal,又简称为…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...