当前位置: 首页 > news >正文

Android谈谈ArrayList和LinkedList的区别?

Android中的`ArrayList`和`LinkedList`都是Java集合框架中的`List`接口的实现,但它们在内部数据结构和性能特性上有所不同:

1. **内部数据结构**:
   - `ArrayList`是基于动态数组(可调整大小的数组)实现的。它在内存中是连续存储的,这使得随机访问元素非常快速。
   - `LinkedList`是基于双向链表实现的。它由一系列节点组成,每个节点包含数据和指向前一个及后一个节点的引用。这使得在链表中间插入或删除元素非常高效。

2. **性能**:
   - 在`ArrayList`中,随机访问(通过索引获取元素)非常快,时间复杂度为O(1)。但是,插入和删除操作可能需要移动大量元素,特别是当操作发生在列表的开始部分时,时间复杂度为O(n)。
   - 在`LinkedList`中,随机访问元素较慢,因为需要从头或尾开始遍历链表,时间复杂度为O(n)。但是,插入和删除操作非常快,特别是当它们发生在链表的头部或尾部时,时间复杂度为O(1)。

3. **内存使用**:
   - `ArrayList`由于是连续存储,可能会有额外的空间用于扩容,这可能导致内存使用上的浪费。
   - `LinkedList`的内存使用通常更加紧凑,因为它不需要为可能的扩容预留额外空间。但是,每个节点需要额外的空间来存储前后节点的引用。

4. **使用场景**:
   - 当你需要频繁地随机访问列表中的元素,或者列表的主要操作是添加和删除元素,且这些操作主要发生在列表的尾部时,`ArrayList`是更好的选择。
   - 当你需要频繁地在列表的任意位置插入或删除元素时,`LinkedList`是更合适的选择,因为它在这些操作上的性能更优。

在选择使用`ArrayList`还是`LinkedList`时,应根据实际的应用场景和操作模式来决定。如果不确定,可以创建一个基准测试来比较不同操作在两种数据结构上的性能。

当然,`ArrayList`和`LinkedList`的选择不仅仅是基于性能考虑,还有其他一些因素可能影响你的决策:

1. **线程安全性**:
   - 两者都不是线程安全的。在多线程环境中,如果你需要同步访问集合,你需要使用`Collections.synchronizedList`方法来包装它们,或者使用并发集合类如`CopyOnWriteArrayList`。

2. **API和功能**:
   - `ArrayList`提供了一些`LinkedList`没有的便捷方法,如`subList`(返回列表的一个视图),这些方法在`LinkedList`中实现起来可能比较复杂。
   - `LinkedList`提供了额外的方法,如`addFirst`、`addLast`、`removeFirst`和`removeLast`,这些方法在`ArrayList`中实现起来效率较低。

3. **迭代器**:
   - 当使用迭代器遍历集合时,`ArrayList`的迭代器在遍历过程中是快速的,但如果在遍历过程中修改集合,可能会抛出`ConcurrentModificationException`。
   - `LinkedList`的迭代器在遍历过程中可能会慢一些,因为它需要追踪节点的前后关系,但同样,如果在遍历过程中修改集合,也可能会抛出异常。

4. **序列化**:
   - 如果你需要序列化集合(例如,将其保存到文件或通过网络传输),`ArrayList`通常比`LinkedList`更高效,因为它的内部结构更简单。

5. **空间效率**:
   - `ArrayList`的空间效率通常更高,因为它的元素是紧密排列的。然而,如果集合中有很多空位(例如,频繁删除元素),`ArrayList`可能会浪费更多的内存。
   - `LinkedList`的空间效率取决于节点的分布。如果节点分布均匀,它可能比`ArrayList`更节省空间,但如果有很多节点被删除,它可能会留下许多孤立的节点,从而浪费空间。

在选择集合类型时,你应该根据你的应用需求和数据操作模式来权衡这些因素。例如,如果你的应用主要涉及读取操作,那么`ArrayList`可能是更好的选择;如果你的应用需要频繁地在集合中间插入或删除元素,那么`LinkedList`可能更适合。在某些情况下,可能需要在性能和功能之间做出权衡。

相关文章:

Android谈谈ArrayList和LinkedList的区别?

Android中的ArrayList和LinkedList都是Java集合框架中的List接口的实现,但它们在内部数据结构和性能特性上有所不同: 1. **内部数据结构**: - ArrayList是基于动态数组(可调整大小的数组)实现的。它在内存中是连续…...

Appcms存储型XSS漏洞复现

君衍. 一、环境介绍二、环境部署三、测试回显四、多次注入1、第一条评论2、第二条评论3、管理员登录查看 五、编写脚本获取cookie 一、环境介绍 这里需要注意,我没有找到原有的该环境源码包,因为这个是很久前的漏洞了,在XSS学习中可以查看下…...

springcloud-alibaba Sentinel入门

Releases alibaba/Sentinel GitHubSentinel下载官方 在cmd 里面运行 启动命令 java -jar sentinel-dashboard-1.8.6.jar 启动成功前提 java环境 ,已经注册到服务注册中心,8080端口没有被占用 启动后访问地址为 qhttp://localhost:8080http://lo…...

Linux系统——web服务拓展练习

目录 一、实验环境搭建 1. Centos 7-5——Client 2. Centos 7-1——网关服务器 3. Centos 7-2——Web1 4. Centos 7-3——Web2 5. Centos 7-4——Nginx 二、在Nginx服务器上搭建LNMP服务,并且能够对外提供Discuz论坛服务;在Web1、Web2服务器上搭建…...

SQLite3中的callback回调函数注意的细节

调用 sqlite3_exec(sqlite3*, const char *sql, sqlite_callback, void *data, char **errmsg)该例程提供了一个执行 SQL 命令的快捷方式, SQL 命令由 sql 参数提供,可以由多个 SQL 命令组成。 在这里, 第一个参数 sqlite3 是打开的数据库对…...

2024华北医院信息网络大会最新演讲嘉宾

大会背景    近年来,我国医疗行业信息化取得了飞跃式的发展,医疗信息化对医疗行业有着重要的支撑作用。2021年国家卫健委、中医药管理局联合印发《公立医院高质量发展促进行动(2021-2025年)》,提出重点建设“三位一体…...

指数移动平均(EMA)

文章目录 前言EMA的定义在深度学习中的应用PyTorch代码实现yolov5中模型的EMA实现 参考 前言 在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做平均,以求提高测试指标并增加模型鲁棒。实际上,_EMA可以…...

无线表格识别模型LORE转换库:ConvertLOREToONNX

引言 总有小伙伴问到阿里的无线表格识别模型是如何转换为ONNX格式的。这个说来有些惭愧,现有的ONNX模型是很久之前转换的了,转换环境已经丢失,且没有做任何笔记。 今天下定决心再次尝试转换,庆幸的是转换成功了。于是有了转换笔…...

C# 视频转图片

在 C# 中将视频转换为图像可以使用 FFmpeg 库。下面是一个示例代码来完成这个任务: using System; using System.Diagnostics;class Program {static void Main(string[] args){string inputFile "input_video.mp4"; // 输入的视频文件路径string outpu…...

LINUX ADC使用

监测 ADC ,使用CAT 查看&#xff1a; LINUX ADC基本使用 &adc {pinctrl-names "default";pinctrl-0 <&adc6>;pinctrl-1 <&adc7>;pinctrl-2 <&adc8>;pinctrl-3 <&adc9>;pinctrl-4 <&adc10>;pinctrl-5 …...

Ubuntu 基本操作-嵌入式 Linux 入门

在 Ubuntu 基本操作 里面基本就分为两部分&#xff1a; 安装 VMware 运行 Ubuntu熟悉 Ubuntu 的各种操作、命令 如果你对 Ubuntu 比较熟悉的话&#xff0c;安装完 VMware 运行 Ubuntu 之后就可以来学习下一章节了。 1. 安装 VMware 运行 Ubuntu 我们首先来看看怎么去安装 V…...

Pytorch可形变卷积分类模型与可视化

E:. │ archs.py │ dataset.py │ deform_conv_v2.py │ train.py │ utils.py │ visual_net.py │ ├─grad_cam │ 2.png │ 3.png │ ├─image │ ├─1 │ │ 154.png │ │ 2.png │ │ │ ├─2 │ │ 143.png │…...

Mysql 表逻辑分区原理和应用

MySQL的表逻辑分区是一种数据库设计技术&#xff0c;它允许将一个表的数据分布在多个物理分区中&#xff0c;但在逻辑上仍然表现为一个单一的表。这种方式可以提高查询性能、简化数据管理&#xff0c;并有助于高效地进行大数据量的存储和访问。逻辑分区基于特定的规则&#xff…...

架构面试题汇总:网络协议34问(七)

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! 网络协议是实现各种设备和应用程序之间顺畅通信的基石。无论是构建分布式系统、开发Web应用&#xff0c;还是进行网络通信&#x…...

lida,一个超级厉害的 Python 库!

目录 前言 什么是 lida 库&#xff1f; lida 库的安装 基本功能 1. 文本分词 2. 词性标注 3. 命名实体识别 高级功能 1. 情感分析 2. 关键词提取 实际应用场景 1. 文本分类 2. 情感分析 3. 实体识别 总结 前言 大家好&#xff0c;今天为大家分享一个超级厉害的 Python …...

K好数 C语言 蓝桥杯算法提升ALGO3 一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字

问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字&#xff0c;那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K 4&#xff0c;L 2的时候&#xff0c;所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大&#xff0c;请你输…...

2195. 深海机器人问题(网络流,费用流,上下界可行流,网格图模型)

活动 - AcWing 深海资源考察探险队的潜艇将到达深海的海底进行科学考察。 潜艇内有多个深海机器人。 潜艇到达深海海底后&#xff0c;深海机器人将离开潜艇向预定目标移动。 深海机器人在移动中还必须沿途采集海底生物标本。 沿途生物标本由最先遇到它的深海机器人完成采…...

Vue/cli项目全局css使用

第一步&#xff1a;创建css文件 在合适的位置创建好css文件&#xff0c;文件可以是sass/less/stylus...第二步&#xff1a;响预处理器loader传递选项 //摘自官网&#xff0c;引入样式 // vue.config.js module.exports {css: {loaderOptions: {// 给 sass-loader 传递选项sa…...

【自然语言处理】【大模型】BitNet:用1-bit Transformer训练LLM

BitNet&#xff1a;用1-bit Transformer训练LLM 《BitNet: Scaling 1-bit Transformers for Large Language Models》 论文地址&#xff1a;https://arxiv.org/pdf/2310.11453.pdf 相关博客 【自然语言处理】【大模型】BitNet&#xff1a;用1-bit Transformer训练LLM 【自然语言…...

安装及管理docker

文章目录 1.Docker介绍2.Docker安装3.免sudo设置4. 使用docker命令5.Images6.运行docker容器7. 管理docker容器8.创建image9.Push Image 1.Docker介绍 Docker 是一个简化在容器中管理应用程序进程的应用程序。容器让你在资源隔离的进程中运行你的应用程序。类似于虚拟机&#…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...