Android谈谈ArrayList和LinkedList的区别?
Android中的`ArrayList`和`LinkedList`都是Java集合框架中的`List`接口的实现,但它们在内部数据结构和性能特性上有所不同:
1. **内部数据结构**:
- `ArrayList`是基于动态数组(可调整大小的数组)实现的。它在内存中是连续存储的,这使得随机访问元素非常快速。
- `LinkedList`是基于双向链表实现的。它由一系列节点组成,每个节点包含数据和指向前一个及后一个节点的引用。这使得在链表中间插入或删除元素非常高效。
2. **性能**:
- 在`ArrayList`中,随机访问(通过索引获取元素)非常快,时间复杂度为O(1)。但是,插入和删除操作可能需要移动大量元素,特别是当操作发生在列表的开始部分时,时间复杂度为O(n)。
- 在`LinkedList`中,随机访问元素较慢,因为需要从头或尾开始遍历链表,时间复杂度为O(n)。但是,插入和删除操作非常快,特别是当它们发生在链表的头部或尾部时,时间复杂度为O(1)。
3. **内存使用**:
- `ArrayList`由于是连续存储,可能会有额外的空间用于扩容,这可能导致内存使用上的浪费。
- `LinkedList`的内存使用通常更加紧凑,因为它不需要为可能的扩容预留额外空间。但是,每个节点需要额外的空间来存储前后节点的引用。
4. **使用场景**:
- 当你需要频繁地随机访问列表中的元素,或者列表的主要操作是添加和删除元素,且这些操作主要发生在列表的尾部时,`ArrayList`是更好的选择。
- 当你需要频繁地在列表的任意位置插入或删除元素时,`LinkedList`是更合适的选择,因为它在这些操作上的性能更优。
在选择使用`ArrayList`还是`LinkedList`时,应根据实际的应用场景和操作模式来决定。如果不确定,可以创建一个基准测试来比较不同操作在两种数据结构上的性能。
当然,`ArrayList`和`LinkedList`的选择不仅仅是基于性能考虑,还有其他一些因素可能影响你的决策:
1. **线程安全性**:
- 两者都不是线程安全的。在多线程环境中,如果你需要同步访问集合,你需要使用`Collections.synchronizedList`方法来包装它们,或者使用并发集合类如`CopyOnWriteArrayList`。
2. **API和功能**:
- `ArrayList`提供了一些`LinkedList`没有的便捷方法,如`subList`(返回列表的一个视图),这些方法在`LinkedList`中实现起来可能比较复杂。
- `LinkedList`提供了额外的方法,如`addFirst`、`addLast`、`removeFirst`和`removeLast`,这些方法在`ArrayList`中实现起来效率较低。
3. **迭代器**:
- 当使用迭代器遍历集合时,`ArrayList`的迭代器在遍历过程中是快速的,但如果在遍历过程中修改集合,可能会抛出`ConcurrentModificationException`。
- `LinkedList`的迭代器在遍历过程中可能会慢一些,因为它需要追踪节点的前后关系,但同样,如果在遍历过程中修改集合,也可能会抛出异常。
4. **序列化**:
- 如果你需要序列化集合(例如,将其保存到文件或通过网络传输),`ArrayList`通常比`LinkedList`更高效,因为它的内部结构更简单。
5. **空间效率**:
- `ArrayList`的空间效率通常更高,因为它的元素是紧密排列的。然而,如果集合中有很多空位(例如,频繁删除元素),`ArrayList`可能会浪费更多的内存。
- `LinkedList`的空间效率取决于节点的分布。如果节点分布均匀,它可能比`ArrayList`更节省空间,但如果有很多节点被删除,它可能会留下许多孤立的节点,从而浪费空间。
在选择集合类型时,你应该根据你的应用需求和数据操作模式来权衡这些因素。例如,如果你的应用主要涉及读取操作,那么`ArrayList`可能是更好的选择;如果你的应用需要频繁地在集合中间插入或删除元素,那么`LinkedList`可能更适合。在某些情况下,可能需要在性能和功能之间做出权衡。
相关文章:
Android谈谈ArrayList和LinkedList的区别?
Android中的ArrayList和LinkedList都是Java集合框架中的List接口的实现,但它们在内部数据结构和性能特性上有所不同: 1. **内部数据结构**: - ArrayList是基于动态数组(可调整大小的数组)实现的。它在内存中是连续…...
Appcms存储型XSS漏洞复现
君衍. 一、环境介绍二、环境部署三、测试回显四、多次注入1、第一条评论2、第二条评论3、管理员登录查看 五、编写脚本获取cookie 一、环境介绍 这里需要注意,我没有找到原有的该环境源码包,因为这个是很久前的漏洞了,在XSS学习中可以查看下…...
springcloud-alibaba Sentinel入门
Releases alibaba/Sentinel GitHubSentinel下载官方 在cmd 里面运行 启动命令 java -jar sentinel-dashboard-1.8.6.jar 启动成功前提 java环境 ,已经注册到服务注册中心,8080端口没有被占用 启动后访问地址为 qhttp://localhost:8080http://lo…...
Linux系统——web服务拓展练习
目录 一、实验环境搭建 1. Centos 7-5——Client 2. Centos 7-1——网关服务器 3. Centos 7-2——Web1 4. Centos 7-3——Web2 5. Centos 7-4——Nginx 二、在Nginx服务器上搭建LNMP服务,并且能够对外提供Discuz论坛服务;在Web1、Web2服务器上搭建…...
SQLite3中的callback回调函数注意的细节
调用 sqlite3_exec(sqlite3*, const char *sql, sqlite_callback, void *data, char **errmsg)该例程提供了一个执行 SQL 命令的快捷方式, SQL 命令由 sql 参数提供,可以由多个 SQL 命令组成。 在这里, 第一个参数 sqlite3 是打开的数据库对…...
2024华北医院信息网络大会最新演讲嘉宾
大会背景 近年来,我国医疗行业信息化取得了飞跃式的发展,医疗信息化对医疗行业有着重要的支撑作用。2021年国家卫健委、中医药管理局联合印发《公立医院高质量发展促进行动(2021-2025年)》,提出重点建设“三位一体…...
指数移动平均(EMA)
文章目录 前言EMA的定义在深度学习中的应用PyTorch代码实现yolov5中模型的EMA实现 参考 前言 在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做平均,以求提高测试指标并增加模型鲁棒。实际上,_EMA可以…...
无线表格识别模型LORE转换库:ConvertLOREToONNX
引言 总有小伙伴问到阿里的无线表格识别模型是如何转换为ONNX格式的。这个说来有些惭愧,现有的ONNX模型是很久之前转换的了,转换环境已经丢失,且没有做任何笔记。 今天下定决心再次尝试转换,庆幸的是转换成功了。于是有了转换笔…...
C# 视频转图片
在 C# 中将视频转换为图像可以使用 FFmpeg 库。下面是一个示例代码来完成这个任务: using System; using System.Diagnostics;class Program {static void Main(string[] args){string inputFile "input_video.mp4"; // 输入的视频文件路径string outpu…...
LINUX ADC使用
监测 ADC ,使用CAT 查看: LINUX ADC基本使用 &adc {pinctrl-names "default";pinctrl-0 <&adc6>;pinctrl-1 <&adc7>;pinctrl-2 <&adc8>;pinctrl-3 <&adc9>;pinctrl-4 <&adc10>;pinctrl-5 …...
Ubuntu 基本操作-嵌入式 Linux 入门
在 Ubuntu 基本操作 里面基本就分为两部分: 安装 VMware 运行 Ubuntu熟悉 Ubuntu 的各种操作、命令 如果你对 Ubuntu 比较熟悉的话,安装完 VMware 运行 Ubuntu 之后就可以来学习下一章节了。 1. 安装 VMware 运行 Ubuntu 我们首先来看看怎么去安装 V…...
Pytorch可形变卷积分类模型与可视化
E:. │ archs.py │ dataset.py │ deform_conv_v2.py │ train.py │ utils.py │ visual_net.py │ ├─grad_cam │ 2.png │ 3.png │ ├─image │ ├─1 │ │ 154.png │ │ 2.png │ │ │ ├─2 │ │ 143.png │…...
Mysql 表逻辑分区原理和应用
MySQL的表逻辑分区是一种数据库设计技术,它允许将一个表的数据分布在多个物理分区中,但在逻辑上仍然表现为一个单一的表。这种方式可以提高查询性能、简化数据管理,并有助于高效地进行大数据量的存储和访问。逻辑分区基于特定的规则ÿ…...
架构面试题汇总:网络协议34问(七)
码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 网络协议是实现各种设备和应用程序之间顺畅通信的基石。无论是构建分布式系统、开发Web应用,还是进行网络通信&#x…...
lida,一个超级厉害的 Python 库!
目录 前言 什么是 lida 库? lida 库的安装 基本功能 1. 文本分词 2. 词性标注 3. 命名实体识别 高级功能 1. 情感分析 2. 关键词提取 实际应用场景 1. 文本分类 2. 情感分析 3. 实体识别 总结 前言 大家好,今天为大家分享一个超级厉害的 Python …...
K好数 C语言 蓝桥杯算法提升ALGO3 一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字
问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K 4,L 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输…...
2195. 深海机器人问题(网络流,费用流,上下界可行流,网格图模型)
活动 - AcWing 深海资源考察探险队的潜艇将到达深海的海底进行科学考察。 潜艇内有多个深海机器人。 潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动。 深海机器人在移动中还必须沿途采集海底生物标本。 沿途生物标本由最先遇到它的深海机器人完成采…...
Vue/cli项目全局css使用
第一步:创建css文件 在合适的位置创建好css文件,文件可以是sass/less/stylus...第二步:响预处理器loader传递选项 //摘自官网,引入样式 // vue.config.js module.exports {css: {loaderOptions: {// 给 sass-loader 传递选项sa…...
【自然语言处理】【大模型】BitNet:用1-bit Transformer训练LLM
BitNet:用1-bit Transformer训练LLM 《BitNet: Scaling 1-bit Transformers for Large Language Models》 论文地址:https://arxiv.org/pdf/2310.11453.pdf 相关博客 【自然语言处理】【大模型】BitNet:用1-bit Transformer训练LLM 【自然语言…...
安装及管理docker
文章目录 1.Docker介绍2.Docker安装3.免sudo设置4. 使用docker命令5.Images6.运行docker容器7. 管理docker容器8.创建image9.Push Image 1.Docker介绍 Docker 是一个简化在容器中管理应用程序进程的应用程序。容器让你在资源隔离的进程中运行你的应用程序。类似于虚拟机&#…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
