RocketMQ架构详解
文章目录
- 概述
- RocketMQ架构
- rocketmq的工作流程
- Broker 高可用集群
- 刷盘策略
概述
RocketMQ一个纯java、分布式、队列模型的开源消息中间件,前身是MetaQ,是阿里研发的一个队列模型的消息中间件,后开源给apache基金会成为了apache的顶级开源项目,具有高性能、高可靠、高实时、分布式特点。
RocketMQ是阿里开源的分布式消息中间件,跟其它中间件相比,RocketMQ的特点是纯JAVA实现;集群和HA实现相对简单;在发生宕机和其它故障时消息丢失率更低。
RocketMQ架构
● Producer:消息生产者
● Consumer:消费者
● Broker:MQ 服务,负责接收、分发消息
● NameServer:负责 MQ 服务之间的协调
整体架构中包含四种角色
● Producer :消息发布的角色,Producer 通过 MQ 的负载均衡模块选择相应的 Broker 集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
● Consumer :消息消费的角色,支持以 push 推,pull 拉两种模式对消息进行消费。
● NameServer :名字服务是一个非常简单的 Topic 路由注册中心,其角色类似 Dubbo 中的 zookeeper ,支持 Broker 的动态注册与发现。
● BrokerServer :Broker 主要负责消息的存储、投递和查询以及服务高可用保证
Producer
消息生产者,位于用户的进程内,Producer通过NameServer获取所有Broker的路由信息,根据负载均衡策略选择将消息发到哪个Broker,然后调用Broker接口提交消息。
Producer Group
生产者组,简单来说就是多个发送同一类消息的生产者称之为一个生产者组。
Consumer
消息消费者,位于用户进程内。Consumer通过NameServer获取所有broker的路由信息后,向Broker发送Pull请求来获取消息数据。Consumer可以以两种模式启动,广播(Broadcast)和集群(Cluster),广播模式下,一条消息会发送给所有Consumer,集群模式下消息只会发送给一个Consumer。
Consumer Group
消费者组,和生产者类似,消费同一类消息的多个 Consumer 实例组成一个消费者组。
Topic
Topic用于将消息按主题做划分,Producer将消息发往指定的Topic,Consumer订阅该Topic就可以收到这条消息。Topic跟发送方和消费方都没有强关联关系,发送方可以同时往多个Topic投放消息,消费方也可以订阅多个Topic的消息。在RocketMQ中,Topic是一个上逻辑概念。消息存储不会按Topic分开。
Message
代表一条消息,使用MessageId唯一识别,用户在发送时可以设置messageKey,便于之后查询和跟踪。一个 Message 必须指定 Topic,相当于寄信的地址。Message 还有一个可选的 Tag 设置,以便消费端可以基于 Tag 进行过滤消息。也可以添加额外的键值对,例如你需要一个业务 key 来查找 Broker 上的消息,方便在开发过程中诊断问题。
Tag
标签可以被认为是对 Topic 进一步细化。一般在相同业务模块中通过引入标签来标记不同用途的消息。
Broker
Broker是RocketMQ的核心模块,负责接收并存储消息,同时提供Push/Pull接口来将消息发送给Consumer。Consumer可选择从Master或者Slave读取数据。多个主/从组成Broker集群,集群内的Master节点之间不做数据交互。Broker同时提供消息查询的功能,可以通过MessageID和MessageKey来查询消息。Borker会将自己的Topic配置信息实时同步到NameServer。
Queue
Topic和Queue是1对多的关系,一个Topic下可以包含多个Queue,主要用于负载均衡。发送消息时,用户只指定Topic,Producer会根据Topic的路由信息选择具体发到哪个Queue上。Consumer订阅消息时,会根据负载均衡策略决定订阅哪些Queue的消息。
Offset
RocketMQ在存储消息时会为每个Topic下的每个Queue生成一个消息的索引文件,每个Queue都对应一个Offset记录当前Queue中消息条数。
NameServer
NameServer可以看作是RocketMQ的注册中心,它管理两部分数据:集群的Topic-Queue的路由配置;Broker的实时配置信息。其它模块通过Nameserv提供的接口获取最新的Topic配置和路由信息。
● Producer/Consumer :通过查询接口获取Topic对应的Broker的地址信息
● Broker : 注册配置信息到NameServer, 实时更新Topic信息到NameServer
rocketmq的工作流程
RocketMQ 是一个分布式消息中间件系统,其工作流程可以简单描述如下:
- Producer 发送消息:
生产者(Producer)通过发送消息到指定的 Topic(主题)。消息可以包含任意类型的数据,通常以键值对的形式发送。 - Broker 存储消息:
接收到消息的 Broker 节点将消息存储到对应的队列中。消息在 Broker 中以顺序存储,每个 Topic 可以有多个队列,用于水平扩展和提高并发处理能力。 - Consumer 消费消息:
消费者(Consumer)订阅感兴趣的 Topic,并从 Broker 获取消息进行消费。消费者可以以不同的消费模式(如广播模式、集群模式)消费消息。 - 消息过滤和路由:
RocketMQ 支持根据 Tag 进行消息过滤,消费者可以根据 Tag 过滤出需要的消息。此外,RocketMQ 还支持消息路由,确保相同 Key 的消息被发送到同一个队列,保证消息的有序性。 - 消息顺序保证:
RocketMQ 提供有序消息功能,确保消息按照发送顺序被消费。通过设置 MessageQueueSelector 接口实现消息的有序发送和消费。 - 高可用性和容错:
RocketMQ 集群部署方式支持主备架构,可以保证消息队列的高可用性和容错性。当 Master 节点宕机时,会自动选举一个 Slave 节点作为新的 Master,保证服务的持续性。 - 监控和管理:
RocketMQ 提供了丰富的监控和管理工具,可以实时监控消息发送和消费情况,查看集群健康状态,帮助用户及时发现和解决问题。
总的来说,RocketMQ 的工作流程包括消息生产、存储、消费、过滤、路由、顺序保证等环节,通过这些环节协同工作,实现了高性能、可靠性的消息传递和处理机制。
Broker 高可用集群
Broker 通过主从集群来实现消息高可用。跟 Kafka 不同的是,RocketMQ 并没有 Master 节点选举功能,而是采用多 Master 多 Slave 的集群架构。Producer 写入消息时写入 Master 节点,Slave 节点主动从 Master 节点拉取数据来保持跟 Master 节点的数据一致。
Consumer 消费消息时,既可以从 Master 节点拉取数据,也可以从 Slave 节点拉取数据。 到底是从 Master 拉取还是从 Slave 拉取取决于 Master 节点的负载和 Slave 的同步情况 。如果 Master 负载很高,Master 会通知 Consumer 从 Slave 拉取消息,而如果 Slave 同步消息进度延后,则 Master 会通知 Consumer 从 Master 拉取数据。总之,从 Master 拉取还是从 Slave 拉取由 Master 来决定。
如果 Master 节点发生故障,RocketMQ 会使用基于 raft 协议的 DLedger 算法来进行主从切换。Broker 每隔 30s 向 Name Server 发送心跳,Name Server 如果 120s 没有收到心跳,就会判断 Broker 宕机了
刷盘策略
RocketMQ 采用灵活的刷盘策略。
异步刷盘
消息写入 CommitLog 时,并不会直接写入磁盘,而是先写入PageCache 缓存中,然后用后台线程异步把消息刷入磁盘。异步刷盘策略就是消息写入 PageCache 后立即返回成功,这样写入效率非常高。如果能容忍消息丢失,异步刷盘是最好的选择。
同步刷盘
即使同步刷盘,RocketMQ 也不是每条消息都要刷盘,线程将消息写入内存后,会请求刷盘线程进行刷盘,但是刷盘线程并不会只把当前请求的消息刷盘,而是会把待刷盘的消息一同刷盘。同步刷盘策略保证了消息的可靠性,但是也降低了吞吐量,增加了延迟。
相关文章:

RocketMQ架构详解
文章目录 概述RocketMQ架构rocketmq的工作流程Broker 高可用集群刷盘策略 概述 RocketMQ一个纯java、分布式、队列模型的开源消息中间件,前身是MetaQ,是阿里研发的一个队列模型的消息中间件,后开源给apache基金会成为了apache的顶级开源项目…...

【AI视野·今日NLP 自然语言处理论文速览 第八十二期】Tue, 5 Mar 2024
AI视野今日CS.NLP 自然语言处理论文速览 Tue, 5 Mar 2024 (showing first 100 of 175 entries) Totally 100 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Key-Point-Driven Data Synthesis with its Enhancement on Mathematica…...
windows 两个服务器远程文件夹同步,支持文件新增文件同步、修改文件同步、删除文件同步,根据文件大小和时间戳判断文件是否修改 python脚本
在Python中实现Windows两个服务器之间的文件夹同步,包括文件新增、修改和删除的同步,可以使用paramiko库进行SSH连接以及SFTP传输,并结合文件大小和时间戳判断文件是否发生过变化。以下是包含删除文件同步逻辑的完整脚本示例: im…...

vite项目修改node_modules
问题详情 在使用某个依赖的时候遇到了bug,提交issue后不想一直等待到作者更新版本,所以寻求临时自己解决 问题解决 在node_modules里找到需要修改的依赖,修改想要修改的代码 修改后记得保存 然后在node_modules里找到.vite文件夹&#x…...
NLP神器Transformers入门简单概述
在这篇博客中,我们将深入探索 🤗 Transformers —— 一个为 PyTorch、TensorFlow 和 JAX 设计的先进机器学习库。🤗 Transformers 提供了易于使用的 API 和工具,使得下载和训练前沿的预训练模型变得轻而易举。利用预训练模型不仅能减少计算成本和碳足迹,还能节省从头训练…...
微信小程序-wxml语法
介绍 WXML(WeiXin Markup Language)是框架设计的一套标签语言,可以进行页面布局,声明事件,数据绑定,条件判断。 语法 数据绑定 <view> {{message}} </view>// page.js Page({data: { // 状态…...
网络层转发分组的过程
分组转发都是基于目的主机所在网络的,这事因为互联网上的网络数远小于主机数,这样可以极大的压缩转发表的大小。当分组到达路由器后,路由器根据目的IP地址的网络地址前缀查找转发表,确定下一跳应当到哪个有路由器。因此࿰…...

计算两帧雷达数据之间的变换矩阵
文章目录 package.xmlCMakeLists.txtpoint_cloud_registration.cc运行结果 package.xml <?xml version"1.0"?> <package format"2"><name>point_cloud_registration</name><version>0.0.0</version><descriptio…...
2. gin中间件注意事项、路由拆分与注册技巧
文章目录 一、中间件二、Gin路由简介1、普通路由2、路由组 三、路由拆分与注册1、基本的路由注册2、路由拆分成单独文件或包3、路由拆分成多个文件4、路由拆分到不同的APP 一、中间件 在日常工作中,经常会有一些计算接口耗时和限流的操作,如果每写一个接…...

R语言复现:如何利用logistic逐步回归进行影响因素分析?
Logistic回归在医学科研、特别是观察性研究领域,无论是现况调查、病例对照研究、还是队列研究中都是大家经常用到的统计方法,而在影响因素研究筛选自变量时,大家习惯性用的比较多的还是先单后多,P<0.05纳入多因素研究&…...

【MySQL使用】show processlist 命令详解
show processlist 命令详解 一、命令含义二、命令返回参数三、Command值解释四、State值解释五、参考资料 一、命令含义 对于一个MySQL连接,或者说一个线程,任何时刻都有一个状态,该状态表示了MySQL当前正在做什么。SHOW PROCESSLIST 命令的…...
分类算法(Classification algorithms)
逻辑回归(logical regression): 逻辑回归这个名字听上去好像应该是回归算法的,但其实这个名字只是在历史上取名有点区别,但实际上它是一个完全属于是分类算法的。 我们为什么要学习它呢?在用我们的线性回归时会遇到一…...

深度学习-Softmax 回归 + 损失函数 + 图片分类数据集
Softmax 回归 损失函数 图片分类数据集 1 softmax2 损失函数1均方L1LossHuber Loss 3 图像分类数据集4 softmax回归的从零开始实现 1 softmax Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题,将一个实数向量转换为概率分布。Softmax函…...
分布式锁从0到1落地实现01(mysql/redis/zk)
1 准备数据库表 CREATE TABLE user ( id bigint(20) NOT NULL COMMENT 主键ID, name varchar(30) DEFAULT NULL COMMENT 姓名, age int(11) DEFAULT NULL COMMENT 年龄, email varchar(50) DEFAULT NULL COMMENT 邮箱, PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8;I…...
安全运营方案的基本框架和关键要素
一、前言 阐述安全运营方案的目的和重要性。强调安全运营与组织整体战略目标的关联。 二、安全运营原则 确立安全运营的基本原则,如保密性、完整性和可用性。明确安全责任划分,确保各部门和人员履行安全职责。 三、安全风险评估与管理 进行全面的安…...

用C语言执行SQLite3的gcc编译细节
错误信息: /tmp/cc3joSwp.o: In function main: execSqlite.c:(.text0x100): undefined reference to sqlite3_open execSqlite.c:(.text0x16c): undefined reference to sqlite3_exec execSqlite.c:(.text0x174): undefined reference to sqlite3_close execSqlit…...

matlab双目相机标定-需要什么参数、怎么获得
相机标定目的:获得相机内参、外参、畸变系数,摄像头的内参(f,1/dx,1/dy,cx,cy)、畸变参数(k1,k2,k3,p1,p1)和外参(R,t),用于接下来的双目校正和深度图生成从而实现二维到三维的转换。 相机标定方法:opencv 双目相机标定以及立体…...
大型语言模型的智能助手:检索增强生成(RAG)
背景 在人工智能的浪潮中,大型语言模型(LLMs)如GPT系列和LLama系列在自然语言处理(NLP)领域取得了显著成就。它们能够完成复杂的语言任务,如文本摘要、机器翻译、甚至创作诗歌。然而,这些模型在…...

Ubuntu 安装谷歌拼音输入法
一、Fcitx 安装 在Ubuntu 下,谷歌拼音输入法是基于Fcitx输入法的。所以,首先需要安装Fcitx。一般来说,Ubuntu最新版中都默认安装了Fcitx,但是为了确保一下,我们可以在系统终端中运行如下命令: sudo apt ins…...

修改MonkeyDev默认配置适配Xcode15
上一篇文章介绍了升级Xcode15后,适配MonkeyDev的一些操作,具体操作可以查看:Xcode 15 适配 MonkeyDev。 但是每次新建项目都要去修改那些配置,浪费时间和精力,这篇文章主要介绍如何修改MonkeyDev的默认配置࿰…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...