当前位置: 首页 > news >正文

傅里叶变换pytorch使用

参考视频:1 傅里叶变换原理_哔哩哔哩_bilibili

傅里叶变换是干嘛的:

傅里叶得到低频、高频信息,针对低频、高频处理能够实现不同的目的。
傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换后,能够恢复到原始图像
在频域对图像进行处理,在频域的处理会反映在逆变换图像上

原理

 

傅里叶支持值域和频域互推

振幅

相位:开始的时间

numpy实现傅里叶变换

numpy.fft.fft2 傅里叶变换

得到频谱

numpy.fft.fftshift 将零频率分量移动到频谱中心

 20*np.log(np.abs(fshift)) 设置频谱的范围

比如图像是0-255的范围,这样就可以约束频谱到可视的范围

numpy逆傅里叶变换

numpy.fft.ifft2 逆傅里叶变换

返回一个复数数组(complex ndarray)

numpy.fft.ifftshift 逆移动

np.abs(逆傅里叶变换结果)

通过数组获得可以图像显示的值

滤波 

概念

空域→频域→空域

低频对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频对应着广袤的颜色趋于一致的草原。
高频对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。例如,在一幅大草原的图像中,其中狮子的边缘等信息,

接受(通过)或拒绝一定频率的分量

通过低频的滤波器成为低通滤波器

通过高频的滤波器成为高通滤波器

作用:

修改傅里叶变换以达到特殊目的,然后计算IDFT返回到图像域。
特殊目的:图像增强、图像去噪、边缘检测、特征提取、压缩、加密等。

高频

思路:调整高低频率主要是设置图像中的选取的位置,然后把不需要的地方换成黑色(0)

低频

OpenCV实现傅里叶变换

cv2.dft(原始图像,转换标识)

返回结果:

双通道:1.结果的实数部分,2.结果的虚数部分

原始图像要先转换成np.float32

转换标识:cv2.DFT_COMPLEX_OUTPUT输出复数阵列

cv2.magnitude(参数1,参数2)计算幅值

参数1∶浮点型X坐标值,也就是实部
参数2:   浮点型Y坐标值,也就是虚部

cv2.idft(原始数据) 逆傅里叶变换

返回结果:取决于原始数据的类型和大小

原始数据:实数或者复数均可

numpy.fft.ifftshift

ffshift函数的逆函数

相关文章:

傅里叶变换pytorch使用

参考视频:1 傅里叶变换原理_哔哩哔哩_bilibili 傅里叶变换是干嘛的: 傅里叶得到低频、高频信息,针对低频、高频处理能够实现不同的目的。 傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换后,能够恢复到原始图像…...

LeetCode104 二叉树的最大深度

题目 给定一个二叉树 root ,返回其最大深度。二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入:root [1,null,…...

使用Spring的AOP

使用Spring的AOP 一、AOP 的常用注解1.切面类Aspect2.Pointcut3.前置通知Before4.后置通知AfterReturning5.环绕通知Around6.异常通知AfterThrowing7.最终通知After8.切面顺序Order9.启用自动代理EnableAspectJAutoProxy 二、AOP注解方式开发三、AOP 全注解开发四、基于XML配置…...

爬虫之矛---JavaScript基石篇3<JavaScript构造函数的内部机制和应用(2)>

前言: 继续上一篇https://blog.csdn.net/m0_56758840/article/details/136592611 正文: 1.ES6中的类和构造函数的对应关系 A. 介绍ES6引入的类的概念和语法糖 类的概念: ES6引入了类(class)的概念,类是一种抽象的数据类型&…...

_note_05

1.说一说什么是函数重载? 函数签名相同除了 形参不同数据类型 函数签名相同除了 形参不同个数 2.void关键字的作用?返回值是void ,可以写return 吗? 函数无返回,使用void修饰; 可以只使用return使函数结束; 3.按要…...

将格蠹GDK8的cmake3.10升级为cmake3.15

#升级过程# 1、wget https://cmake.org/files/v3.15/cmake-3.15.0-rc1.tar.gz 2、tar -zxvf cmake-3.15.0-rc1.tar.gz 3 、cd cmake-3.15.0-rc1 4、./configure 5、sudo make install 6、reboot 7、查看cmake版本: geduergdk8:~$ cmake --version cmake ve…...

b树(一篇文章带你 理解 )

目录 一、引言 二、B树的基本定义 三、B树的性质与操作 1 查找操作 2 插入操作 3 删除操作 四、B树的应用场景 1 数据库索引 2 文件系统 3 网络路由表 五、哪些数据库系统不使用B树进行索引 1 列式数据库 2 图形数据库 3 内存数据库 4 NoSQL数据库 5 分布式数据…...

OD_2024_C卷_200分_7、5G网络建设【JAVA】【最小生成树】

package odjava;import java.util.Scanner;public class 七_5G网络建设 {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt(); // 基站数量(节点数)int m sc.nextInt(); // 基站对数量(边数&…...

面试题:分布式锁用了 Redis 的什么数据结构

在使用 Redis 实现分布式锁时,通常使用 Redis 的字符串(String)。Redis 的字符串是最基本的数据类型,一个键对应一个值,它能够存储任何形式的字符串,包括二进制数据。字符串类型的值最多可以是 512MB。 Re…...

【学习心得】websocket协议简介并与http协议对比

一、轮询和长轮询 在websocket协议出现之前,要想实现服务器和客户端的双向持久通信采取的是Ajax轮询。它的原理是每隔一段时间客户端就给服务器发送请求找服务器要数据。 让我们通过一个生活化的比喻来解释轮询和长轮询假设你正在与一位不怎么主动说话的老大爷&…...

基于Token的身份验证:安全与效率的结合

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

Electron程序如何在MacOS下获取相册访问权限

1.通过entitiment.plist,在electron-builder签名打包时,给app包打上签名。最后可以通过codesign命令进行验证。 TestPhotos.plist electron-builder配置文件中加上刚刚的plist文件。 通过codesign命令验证,若出现这个,则说明成…...

uniapp让输入框保持聚焦状态,不会失去焦点

使用场景:当输入框还有发送按钮的时候,点击发送希望软键盘不消失,还可以继续输入,或者避免因输入图片标签造成的屏闪问题 多次尝试后发现一个很实用的方法,适用input输入框和editor输入框 解决办法:把cli…...

面试中如何介绍mysql的B+树

B树是B树的变体&#xff0c;也是一颗多路搜索树。在MySQL中&#xff0c;B树是为磁盘或者其他直接辅助存储设备所设计的一种平衡的查找树结构。其具有以下特点&#xff1a; 每个节点最多有m个子女&#xff0c;m阶的B树深度最多为m。非根节点关键值个数范围是⌈m/2⌉-1<k<m…...

【Linux C | 网络编程】多播的概念、多播地址、UDP实现多播的C语言例子

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

AIGC实战——GPT(Generative Pre-trained Transformer)

AIGC实战——GPT 0. 前言1. GPT 简介2. 葡萄酒评论数据集3. 注意力机制3.1 查询、键和值3.2 多头注意力3.3 因果掩码 4. Transformer4.1 Transformer 块4.2 位置编码 5. 训练GPT6. GPT 分析6.1 生成文本6.2 注意力分数 小结系列链接 0. 前言 注意力机制能够用于构建先进的文本…...

微信小程序-入门

一.通过 Npm方式下载构建 1.下载和安装Npm&#xff1a;Npm https://docs.npmjs.com/downloading-and-installing-node-js-and-npm 或者 https://nodejs.org/en/download/ 未安装npm 提示 以下以安装node安装包为例 按任意键继续 安装完成后 2. 下载和安装小程序开…...

0102全排列和对换-行列式-线性代数

把n个不同的数排成一列&#xff0c;叫做这n个数的全排列&#xff08;排列&#xff09;。 一般情况&#xff0c; 1 , 2 , ⋯ , n 1,2,\cdots,n 1,2,⋯,n是n个数排列的标准次序。 当n个数的任一排列中两个数的先后次序与标准次序不同时&#xff0c;有说有一个逆序。 一个排列中所…...

面向对象的编程语言是什么意思?——跟老吕学Python编程

面向对象的编程语言是什么意思&#xff1f;——跟老吕学Python编程 面向对象是什么意思&#xff1f;面向对象的定义面向对象的早期发展面向对象的背景1.审视问题域的视角2.抽象级别3.封装体4.可重用性 面向对象的特征面向对象的开发方法面向对象程序设计基本思想实现 面向对象的…...

Spring Boot整合MyBatis Plus配置多数据源

Spring Boot 专栏&#xff1a;https://blog.csdn.net/dkbnull/category_9278145.html Spring Cloud 专栏&#xff1a;https://blog.csdn.net/dkbnull/category_9287932.html GitHub&#xff1a;https://github.com/dkbnull/SpringBootDemo Gitee&#xff1a;https://gitee.com/…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...