当前位置: 首页 > news >正文

C# OpenCvSharp DNN FreeYOLO 密集行人检测

目录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN FreeYOLO 密集行人检测

效果

模型信息

Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 1260, 6]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List<string> class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){confThreshold = 0.6f;nmsThreshold = 0.5f;modelpath = "model/yolo_free_huge_crowdhuman_192x320.onnx";inpHeight = 192;inpWidth = 320;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List<string>();class_names.Add("person");num_class = 1;image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List<float> confidences = new List<float>();List<Rect> boxes = new List<Rect>();List<int> classIds = new List<int>();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k < num_class; k++){if (pdata[k + 5] > max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre* box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n];  //cxfloat cy = (0.5f + i + pdata[1]) * strides[n];   //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]);   //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]);  //hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);result_image = image.Clone();for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

可执行程序exe下载

源码下载

相关文章:

C# OpenCvSharp DNN FreeYOLO 密集行人检测

目录 效果 模型信息 项目 代码 下载 C# OpenCvSharp DNN FreeYOLO 密集行人检测 效果 模型信息 Inputs ------------------------- name&#xff1a;input tensor&#xff1a;Float[1, 3, 192, 320] --------------------------------------------------------------- …...

一次HW红初面试

一、描述外网打点的流程&#xff1f; 靶标确认、信息收集、漏洞探测、漏洞利用、权限获取。最终的目的是获取靶标的系统权限/关键数据。 在这个过程中&#xff0c;信息收集最为重要。掌握靶标情报越多&#xff0c;后续就会有更多的攻击方式去打点。比如&#xff1a;钓鱼邮件、…...

网络攻防中nginx安全配置,让木马上传后不能执行、让木马执行后看不到非网站目录文件、命令执行后权限不能过高

网络攻防中nginx安全配置,让木马上传后不能执行、让木马执行后看不到非网站目录文件、命令执行后权限不能过高。 0x01 Nginx介绍 nginx本身不能处理PHP,它只是个web服务器,当接收到请求后,如果是php请求,则发给php解释器处理,并把结果返回给客户端。nginx一般是把请求发…...

ctfshow web入门 php特性 web146-web150

1.web146 :被过滤了&#xff0c;三元运算符用不了&#xff0c;还可以用位运算符&#xff0c;逻辑运算符,等&#xff0c;逻辑运算符要注意或运算符的短路性 eval(return 1|phpinfo()|1) eval(return 1phpinfo()|1) payload&#xff1a; v11&v20&v3(~%8C%86%8C%8B%9A%92…...

Linux:kubernetes(k8s)prestop事件的使用(10)

他的作用是在结束pod容器之后进行的操作 apiVersion: v1 # api文档版本 kind: Pod # 资源对象类型 metadata: # pod相关的元数据&#xff0c;用于描述pod的数据name: nginx-po # pod名称labels: # pod的标签type: app #这个是随便写的 自定义的标签version: 1.0.0 #这个…...

vue2【详解】生命周期(含父子组件的生命周期顺序)

1——beforeCreate&#xff1a;在内存中创建出vue实例&#xff0c;数据观测 (data observer) 和 event/watcher 事件配置还没调用&#xff08;data 和 methods 属性还没初始化&#xff09; 【执行数据观测 (data observer) 和 event/watcher 事件配置】 2——created&#xf…...

C++基础语法和概念

基本语法和数据类型 C 是一种高性能的编程语言&#xff0c;允许程序员对内存管理进行精细控制。了解 C 的基本语法和数据类型是学习这门语言的第一步。以下是一些基础概念的详细介绍&#xff1a; 基本语法 程序结构 一个基础的 C 程序通常包括一个或多个头文件引用、一个 m…...

Vue.js+SpringBoot开发海南旅游景点推荐系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…...

mysql笔记:11. 性能优化

文章目录 概览查询速度优化1. 分析查询语句1.1 EXPLAIN1.2 DESCRIBE 2. 使用索引优化查询3. 优化子查询 数据库结构优化1. 分解表2. 建立中间表3. 增加冗余字段4. 优化插入速度4.1. MyISAM引擎表4.2. InnoDB引擎表 5. 分析表、检查表和优化表5.1. 分析表5.2. 检查表5.3. 优化表…...

基于Docker搭建Maven私服仓库(Linux)详细教程

文章目录 1. 下载镜像并启动容器2. 配置Nexus3. 配置本地Maven仓库 1. 下载镜像并启动容器 下载Nexus3镜像 docker pull sonatype/nexus3查看Nexus3镜像是否下载成功 docker images创建Nexus3的挂载文件夹 mkdir /usr/local/nexus-data && chown -R 200 /usr/local…...

IPSEC VPPN 实验

背景&#xff1a;FW1和FW2为双机热备 要求&#xff1a;在FW5和FW3之间建立一条IPSEC通道&#xff0c;保证10.0.2.0/24网段可以正常访问到192.168.1.0/24IPSEC VPPN实验配置 fw2配置 加密数据流 新建对应IKE...

基于单片机的视觉导航小车设计

目 录 摘 要 I Abstract II 引 言 1 1 总体方案设计 3 1.1 方案论证 3 1.2 项目总体设计 3 2 项目硬件设计 4 2.1 主控模块设计 4 2.1.1单片机选型 4 2.1.2 STM32F103RCT6芯片 4 2.2单片机最小系统电路 5 2.3电机驱动模块设计 7 2.4红外模块设计 8 2.5红外遥控模块设计 9 2.6超…...

Autosar教程-Mcal教程-GPT配置教程

3.3GPT配置、生成 3.3.1 GPT配置所需要的元素 GPT实际上就是硬件定时器,需要配置的元素有: 1)定时器时钟:定时器要工作需要使能它的时钟源 2)定时器分步:时钟源进到定时器后可以通过分频后再给到定时器 定时器模块选择:MCU有多个定时器模块,需要决定使用哪个定时器模块作…...

力扣--动态规划5.最长回文子串

class Solution { public:string longestPalindrome(string s) {// 获取输入字符串的长度int n s.size();// 如果字符串长度为1&#xff0c;直接返回原字符串&#xff0c;因为任何单个字符都是回文串if (n 1)return s;// 创建一个二维数组dp&#xff0c;用于记录子串是否为回…...

PokéLLMon 源码解析(一)

.\PokeLLMon\poke_env\concurrency.py # 导入必要的模块 import asyncio import atexit import sys from logging import CRITICAL, disable from threading import Thread from typing import Any, List# 在新线程中运行事件循环 def __run_loop(loop: asyncio.AbstractEvent…...

银河麒麟服务器操作系统V10【vnc配置多用户登录】

1.添加多用户&#xff08;规划kingbase使用5901窗口&#xff0c;root使用5903&#xff09;&#xff1b; adduser kingbase 2.配置文件&#xff1b; cp -rp /lib/systemd/system/vncserver.service /etc/systemd/system/vncserver:1.servicecp -rp /lib/systemd/system/vncse…...

Logseq电脑端+安卓端同步gitee或github

文章目录 0.初衷1.电脑端1.1 新建仓库1.2 克隆项目&#xff0c;生成秘钥1.3 添加图谱&#xff0c;选择文件目录&#xff0c;我是原本就有笔记&#xff0c;所以会如下所示。1.4 下载脚本文件1.5赋权限 &#xff08;windows可跳过&#xff09;1.6 修改脚本命令1.7 logseq设置同步…...

【FAQ】HarmonyOS SDK 闭源开放能力 —Map Kit

1.问题描述 在App中供用户在地图上选择地址&#xff0c;目前在使用Map Kit结合geolocationManager逆地理编码时获取的地址信息描述不准确&#xff0c;希望能提供相应的Demo参考。 解决方案 Demo代码示例&#xff1a; getLocation() { let requestInfo: geoLocationManager.…...

【ros2 control 机器人驱动开发】双关节多控制器机器人学习-example 6

【ros2 control 机器人驱动开发】双关节多控制器机器人学习-example 6 文章目录 前言一、创建controller相关二、逻辑分析RRBotModularJoint类解析ros2_control.xacro解析三、测试运行测试forward_position_controller总结前言 本篇文章在上篇文章的基础上主要讲解双轴机器人驱…...

Learn OpenGL 07 摄像机

定义摄像机参数 glm::vec3 cameraPos glm::vec3(0.0f, 0.0f, 3.0f);//摄像机位置glm::vec3 cameraTarget glm::vec3(0.0f, 0.0f, 0.0f);glm::vec3 cameraDirection glm::normalize(cameraPos - cameraTarget);//摄像机方向&#xff0c;指向z轴正方向 glm::vec3 up glm::vec…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...