当前位置: 首页 > news >正文

【YOLOv9】训练模型权重 YOLOv9.pt 重新参数化轻量转为 YOLOv9-converted.pt

【YOLOv9】训练模型权重 YOLOv9.pt 重新参数化轻量转为 YOLOv9-converted.pt

  • 1. 模型权重准备
  • 2. 模型重新参数化
    • 2.1 文件准备
    • 2.2 参数修改
    • 2.3 重新参数化过程
  • 3. 重新参数化后模型推理
    • 3.1 推理超参数配置
    • 3.2 模型推理及对比
  • 4. onnx 模型导出(补充内容)
    • 4.1 超参数配置
    • 4.2 模型导出
    • 4.3 onnx 推理


Code 链接: YOLOV9
Paper 链接: YOLOV9: Learning What You Want to Learn Using Programmable Gradient Information

1. 模型权重准备

  • 可以参考另一篇博客 【模型复现】自制数据集上复现刚发布的最新 yolov9 代码 训练一个所需版本的 YOLOv9 模型,训练完成后就会得到 YOLOv9 模型权重文件,如这里使用 c 版本训练得到了 yolov9-smoke.pt,大小约为 98M.
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/55f2993d594046eea0784e7bde1ecb06.png#

2. 模型重新参数化

2.1 文件准备

  • 找到官方代码目录 tools 内的 reparameterization.ipynb 文件,并将该文件放到主目录下。
    在这里插入图片描述

2.2 参数修改

  • 选择训练权重版本对应的 gelan.yaml 文件,如这里需修改 gelan-c.yaml 文件,并将 nc 修改为模型训练时的标签数量。
    在这里插入图片描述

2.3 重新参数化过程

  • 进入 reparameterization.ipynb 文件,进行如下修改:
    • 修改 cfg 为版本对应的 gelan.yaml 文件路径
    • 修改 nc 为标签数量
    • 修改 ckpt 为训练好的模型权重文件路径
  • 修改后运行出现下述界面即可。
    在这里插入图片描述
  • 继续运行文件中的代码块,运行完成后继续。
    在这里插入图片描述
  • 修改下述代码块中的权重文件保存路径并运行。
    在这里插入图片描述
  • 完成后即可在指定保存路径下找到重新参数化后的权重文件,可以看到文件大小为50M,相比减少了48M。
    在这里插入图片描述

3. 重新参数化后模型推理

3.1 推理超参数配置

  • yolov9 代码路径下进入 detect.py 文件进行超参数配置,常用需修改参数如下:
    • data:数据配置文件路径
    • weights:重新参数化后的的 yolov9-converted.pt 权重路径
    • batch-size:验证 batch-size 数量
    • imgsz:图片大小
    • task:验证数据集选择,如 valtest
  • 推理按需进行超参数配置
    在这里插入图片描述

3.2 模型推理及对比

  • 单卡推理指令
    python detect.py
    
  • 多卡推理指令
    python -m torch.distributed.launch --nproc_per_node 8 detect.py
    
  • 在终端中运行推理命令,若看到下述界面,即成功推理!!!
    在这里插入图片描述
  • 可进入保存路径进行推理图片查看,使用权重 yolov9-smoke-converted.pt 推理示例如下:
    在这里插入图片描述
  • 此外,使用 yolov9-smoke.pt 推理的同一图片示例如下:
    在这里插入图片描述
  • 可以看出,模型重新参数化后使用模型主分支,性能不受影响,但参数量减少近一半!!!

4. onnx 模型导出(补充内容)

4.1 超参数配置

  • yolov9 代码路径下进入 export.py 文件进行超参数配置,常用需修改参数如下:
    • weights:重新参数化后的的 yolov9-converted.pt 权重路径
    • include:导出类型选择,如 onnx
  • 超参数配置如下:
    在这里插入图片描述

4.2 模型导出

  • 模型导出指令
    python export.py
    
  • 在终端中运行推理命令,若看到下述界面,即成功导出!!!
    在这里插入图片描述

4.3 onnx 推理

  • 按照 3.1 推理超参数配置 进行超参数配置,唯一不同的是需将 weights 替换为导出的 onnx 路径。
  • 推理指令
    python detect.py
    
  • 在终端中运行推理命令,若看到下述界面,即成功推理!!!
    在这里插入图片描述
  • 可进入保存路径进行推理图片查看,使用 onnx 推理示例如下:
    在这里插入图片描述

相关文章:

【YOLOv9】训练模型权重 YOLOv9.pt 重新参数化轻量转为 YOLOv9-converted.pt

【YOLOv9】训练模型权重 YOLOv9.pt 重新参数化轻量转为 YOLOv9-converted.pt 1. 模型权重准备2. 模型重新参数化2.1 文件准备2.2 参数修改2.3 重新参数化过程 3. 重新参数化后模型推理3.1 推理超参数配置3.2 模型推理及对比 4. onnx 模型导出(补充内容)4…...

Zookeeper搭建

目录 前言 初了解Zookeeper 搭建 准备 配置Zookeeper 前言 今天来介绍Zookeeper的搭建,其实Zookeeper的搭建很简单,但是为什么还要单独整一节呢,这就不得不先了解Zookeeper有什么功能了!而且现在很火的框架也离不开Zookeepe…...

2.Datax数据同步之Windows下,mysql和sqlserver之间的自定义sql文数据同步

目录 前言步骤操作大纲步骤明细mysql 至 sqlServersqlServer 至 mysql执行同步语句中报 前言 上一篇文章实现了不同的mysql数据库之间的数据同步,在此基础上本篇将实现mysql和sqlserver之间的自定义sql文数据同步 准备工作: JDK(1.8以上,推…...

commonjs和esmodule

commonjs的模块导出和引用写法: lib.js 导出一个模块 let a 1 let b 2 function aPlus1() {return a } module.exports {a,b,aPlus1 } index.js引用一个模块 const {a,b,aPlus1} require(./lib.js) console.log(hh:,a) esmodule的模块导出和引用方法&#x…...

Android的编译系统

安卓的编译真的太多吐槽的地方了,有必须到croot下编译的,有随便改个.c就要七八分钟编译的。我有时候真的不知道这么多开发人员是怎么挺过来的。 今晚简单看看这个编译系统soong吧。 算了,下面这个写的很好了,我先看看吧。。。 …...

Midjourney指控Stability AI夜袭数据,网络风波一触即发

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

JVM知识整体学习

前言:本篇没有任何建设性的想法,只是我很早之前在学JVM时记录的笔记,只是想从个人网站迁移过来。文章其实就是对《深入理解JVM虚拟机》的提炼,纯基础知识,网上一搜一大堆。 一、知识点脑图 本文只谈论HotSpots虚拟机。…...

蓝桥杯--日期统计

目录 一、题目 二、解决代码 三、代码分析 ​四、另一种思路 五、关于set文章推荐 一、题目 二、解决代码 #include <bits/stdc.h> using namespace std; int main() {int arr[100] { 5,6,8,6,9,1,6,1,2,4,9,1,9,8,2,3,6,4,7,7,5,9,5,0,3,8,7,5,8,1,5,8,6,1,8,3,0,…...

[leetcode~dfs]1261. 在受污染的二叉树中查找元素

给出一个满足下述规则的二叉树&#xff1a; root.val 0 如果 treeNode.val x 且 treeNode.left ! null&#xff0c;那么 treeNode.left.val 2 * x 1 如果 treeNode.val x 且 treeNode.right ! null&#xff0c;那么 treeNode.right.val 2 * x 2 现在这个二叉树受到「污…...

PyQt5使用

安装Pyqt5信号与槽使用可视化界面编辑UI (Pyside2)ui生成之后的使用(两种方法)1 ui转化为py文件 进行import2 动态调用UI文件 安装Pyqt5 pip install pyqt5-tools这时候我们使用纯代码实现一个简单的界面 from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButto…...

利用GPT开发应用005:Codex、Turbo、ChatGPT、GPT-4

文章目录 一、GPT-3 Codex二、GPT-3.5 Turbo二、ChatGPT三、GPT-4 一、GPT-3 Codex 2022年3月&#xff0c;OpenAI 发布了 GPT-3 Codex 的新版本。 这个新模型具有编辑和插入文本的能力。它们是通过截至 2021 年 6 月的数据进行训练的&#xff0c;并被描述为比之前版本更强大。到…...

制造行业大数据应用:四大领域驱动产业升级与智慧发展

一、大数据应用&#xff1a;制造行业的智慧引擎 随着大数据技术的不断突破与普及&#xff0c;制造行业正迎来一场前所未有的变革。大数据应用&#xff0c;如同智慧引擎一般&#xff0c;为制造行业注入了新的活力&#xff0c;推动了产业升级与创新发展。 二、大数据应用在制造行…...

25.5 MySQL 聚合函数

1. 聚合函数 聚合函数(Aggregate Function): 是在数据库中进行数据处理和计算的常用函数. 它们可以对一组数据进行求和, 计数, 平均值, 最大值, 最小值等操作, 从而得到汇总结果.常见的聚合函数有以下几种: SUM: 用于计算某一列的数值总和, 可以用于整数, 小数或者日期类型的列…...

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介…...

用Python进行机器学习:Scikit-learn的入门与实践【第126篇—Scikit-learn的入门】

用Python进行机器学习&#xff1a;Scikit-learn的入门与实践 随着机器学习在各个领域的广泛应用&#xff0c;Python成为了一个备受欢迎的机器学习工具之一。在众多机器学习库中&#xff0c;Scikit-learn因其简单易用、功能强大而备受青睐。本文将介绍Scikit-learn的基本概念&am…...

2024年G3锅炉水处理证模拟考试题库及G3锅炉水处理理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年G3锅炉水处理证模拟考试题库及G3锅炉水处理理论考试试题是由安全生产模拟考试一点通提供&#xff0c;G3锅炉水处理证模拟考试题库是根据G3锅炉水处理最新版教材&#xff0c;G3锅炉水处理大纲整理而成&#xff0…...

常用的gpt网站

ChatGPT是一款基于人工智能技术的对话型AI助手&#xff0c;能够进行自然语言交互并提供个性化的对话服务。通过先进的深度学习模型&#xff0c;ChatGPT能够理解用户输入的文本&#xff0c;并生成有逻辑、连贯性的回复。它可以回答各种问题、提供建议、分享知识&#xff0c;还能…...

java中string类型常用的37个函数

java中string类型常用的37个函数—无极低码 int indexOf(int ch, int fromIndex) 、int indexOf(int ch) 、int indexOf(String str, int fromIndex) 、int indexOf(String str) 、int lastIndexOf(int ch, int fromIndex) 、int lastIndexOf(int ch) 、int lastIndexOf(Strin…...

【JVM】字节码指令 getstatic

在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;getstatic 是一个字节码指令&#xff0c;用于从类的静态字段&#xff08;Static Field&#xff09;获取值&#xff0c;并将这个值压入当前方法的操作数栈顶。这个操作仅适用于类级别的静态变量&#xff0c;而非实例变量。…...

P1179 [NOIP2010 普及组] 数字统计

#include <bits/stdc.h> using namespace std;int main(){int l;int r;cin>>l>>r;int sum 0;for (int i l;i < r;i){int temp 0;int j i;while(j){if(j % 10 2){temp;}j j/10;}sum sum temp;}cout << sum;return 0; }[NOIP2010 普及组] 数字…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...