当前位置: 首页 > news >正文

Python 随机漫步

目录

1.  创建 RandomWalk 类

2.  选择方向 

3.  绘制随机漫步图 

4.  总结 


本篇博客将使用 Python 来 生成随机漫步数据,再使用 Matplotlib 库,将以引人注目的方式将这些数据呈现出来。

        随机漫步 顾名思义就是随机走出的步伐,它是这样行走得到的路径:每次行走都是完全随机的、没有明确的方向,结果是由一系列随机决策决定的。我们可以将随机漫步看作是 蚂蚁在晕头转向 的情况下,每次都沿随机的方向前行所经过的路径。 

1.  创建 RandomWalk 类

        为模拟随机漫步,首先创建一个名为 RandomWalk  的类,其作用是 随机的选择前进方向。这个类需要三个属性:一个是 存储随机漫步次数的变量,其他两个是 列表,分别存储随机漫步经过的每个点的 x 坐标y 坐标

RandomWalk 类只包含两个方法:

  • 方法 __init__ () ,初始化属性
  • 方法 fill_walk () ,计算随机漫步经过的所有点
from random import choiceclass RandomWalk:'''一个生成随机漫步数据的类'''def __init__(self, num_points = 500):'''初始化随机漫步的属性'''self.num_points = num_points# 所有随机漫步都使于(0,0)self.x_values = [0]self.y_values = [0]
  • 为做出 随机决策,将 所有可能的选择 都存储在一个列表中,并在每次决策时,都使用模块 random 中的 choice () 来决定使用哪种选择 。
  • 将随机漫步包含的默认点数设置为 5000,这个数大到 足以生成有趣的模式,又小到可确保能够 快速地模拟随机漫步
  • 创建两个用于存储 x 值和 y 值的列表,并让每次漫步都从 点(0,0)出发

2.  选择方向 

我们将使用方法 fill_walk() 来生成 漫步包含的点,并 决定每次漫步的方向 

import randomdef fill_walk(self):'''计算随机漫步包含的所有点'''# 不断漫步,直到列表达到指定的长度while len(self.x_values) < self.num_points:# 决定前进方向以及沿这个方向前进的距离x_direction = random.choice([1,-1])x_distance = random.choice([0,1,2,3,4])x_step = x_direction * x_distancey_direction = random.choice([1,-1])y_distance = random.choice([0,1,2,3,4])y_step = y_direction * y_distance# 拒绝原地踏步if x_step == 0 and y_step == 0:continue# 计算下一个点的 x 值和 y 的值x = self.x_values[-1] + x_stepy = self.y_values[-1] + y_stepself.x_values.append(x)self.y_values.append(y)
  • 先建立一个循环,它不断运行,直到漫步包含所需的点数。方法 fill_walk()的主要部分告诉 Python 如何模拟四种漫步决定:向右走还是向左走沿指定的方向走多远向上走还是向下走沿指定的方向走多远
  •  使用 choice([-1,-1]) 给 x_direction 选择一个值,结果要么是表示向右走的 1,要么是表示向左走的 -1。接下来,choice([0,1,2,3,4]) 随机的选择一个 0~4 的整数,告诉 Python 沿指定方向走多远(x_distance)。通过包含 0 ,不仅能够同时沿两个轴移动,还能够只沿一个轴移动。
  • 移动方向乘以移动距离,确定沿 x 轴和 y 轴移动的距离。如果 x_step 为正将向右移动,为负将向左移动,为零将垂直移动;如果 y_step 为正将向上移动,为负将向下移动,为零将水平移动。如果 x_step 和 y_step 都为零,则意味着原地踏步。我们拒绝这样的情况,接着执行下一次循环。
  • 为获取漫步中下一个点的 x 的值,将 x_step 和 x_values 中的最后一个值相加,对 y 值也做相同的处理。获得下一个点的 x 值和 y 值后,将它们分别附件到列表 x_values 和 y_values 的末尾。

3.  绘制随机漫步图 

下面的代码将随机漫步的所有点都绘制出来:

from random import choice
import matplotlib.pyplot as pltclass RandomWalk:'''一个生成随机漫步数据的类'''def __init__(self, num_points = 5000):'''初始化随机漫步的属性'''self.num_points = num_points# 所有随机漫步都使于(0,0)self.x_values = [0]self.y_values = [0]def fill_walk(self):'''计算随机漫步包含所有的点'''# 不断漫步,直到列表达到指定的长度while len(self.x_values) < self.num_points:# 决定前进的方向以及沿着这个方向前进的距离x_direction = choice([1,-1])x_distance = choice([0,1,2,3,4])x_step = x_direction * x_distancey_direction = choice([1,-1])y_distance = choice([0,1,2,3,4])y_step = y_direction * y_distance# 拒绝原地踏步if x_step == 0 and y_step == 0:continue# 计算下一个点的 x 值和 y 值x = self.x_values[-1] + x_stepy = self.y_values[-1] + y_stepself.x_values.append(x)self.y_values.append(y)# 创建一个 RandomWalk 实例
random_wander = RandomWalk()
random_wander.fill_walk()# 将所有的点都绘制出来
plt.style.use('classic')
(fig,ax) = plt.subplots()
ax.scatter(random_wander.x_values, random_wander.y_values, s = 15)
plt.show()

4.  总结 

         这篇文章主要讲解了随机漫步相关知识点。这期的分享总结就到这里了,如果有疑问的小伙伴,我们在评论区交流嗷~,笔者必回,我们下期再见啦 !!

相关文章:

Python 随机漫步

目录 1. 创建 RandomWalk 类 2. 选择方向 3. 绘制随机漫步图 4. 总结 本篇博客将使用 Python 来 生成随机漫步数据&#xff0c;再使用 Matplotlib 库&#xff0c;将以引人注目的方式将这些数据呈现出来。 随机漫步 顾名思义就是随机走出的步伐&#xff0c;它是这样行…...

Spark SQL优化机制

Spark SQL优化机制Spark SQLCatalyst 优化器逻辑优化物理优化TungstenUnsafe RowWSCGRDD 缺点 : RDD的算子都是高阶函数 &#xff0c;Spark Core 不知函数内的操作&#xff0c;只能闭包形式发给 Executors&#xff0c; 无法优化 DataFrame 不同点&#xff1a; 数据的表示形式…...

十五、Spring中的八大模式

1 简单工厂模式 BeanFactory的getBean()方法&#xff0c;通过唯一标识来获取Bean对象。是典型的简单工厂模式&#xff08;静态工厂模式&#xff09;&#xff1b; 2 工厂方法模式 FactoryBean是典型的工厂方法模式。在配置文件中通过factory-method属性来指定工厂方法&#x…...

GrabCut算法、物体显著性检测

图割GraphCus算法。利用颜色、纹理等信息对GraphCut进行改进&#xff0c;形成效果更好的GrabCut算法。 对图像的目标物体和背景建立一个K维的全协方差高斯混合模型。 其中&#xff0c;单高斯模型的概率密度函数用公式表示为&#xff1a; 高斯混合模型可表示为n个单高斯模型的概…...

亚马逊、速卖通、lazada店铺一直不出单,没流量怎么办?

近几年&#xff0c;跨境电商入驻的卖家越来越多&#xff0c;平台的流量越来越分散&#xff0c;导致店铺没有流量没有订单的情况经常发生&#xff0c;因此卖家对店铺的优化尤为主要。 对于亚马逊卖家来说&#xff0c;几乎每天都会问虽然我把我的产品放在货架上&#xff0c;但没…...

深度剖析C语言符号篇

致前行的人&#xff1a; 人生像攀登一座山&#xff0c;而找寻出路&#xff0c;却是一种学习的过程&#xff0c;我们应当在这过程中&#xff0c;学习稳定冷静&#xff0c;学习如何从慌乱中找到生机。 目录 1.注释符号&#xff1a; 2.续接符和转义符&#xff1a; 3.回车与换行…...

【学习总结】ORBSLAM3使用自己相机数据

本文仅用于自己学习总结。本文档记录如何修改ORBSLAM3的接口&#xff0c;用自己的图片和数据。 单目视觉&#xff0c;无IMU&#xff0c;离线数据运行的配置过程 euroc_examples.sh 首先从euroc_examples.sh这个运行指令改。这个文件在最新版的代码中被删掉了&#xff0c;但通…...

C++单例模式实现

目录 1.提出的需求 ​​​​​​​2.如何定义一个类&#xff0c;使得这个类最多只能创建一个对象&#xff1f; ​​​​​​​3.代码 ​​​​​​​4.小结 C/CLinux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂 ​​​​​​​1.提出的需求 在架构设计时&am…...

343. 整数拆分

343. 整数拆分 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n 2 输出: 1 解释: 2 1 1, 1 1 1。示例 2: 输入: n 10 输出: 36…...

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning学习

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning学习背景贡献论文思想算法局部更新方式全局更新方式实验总结背景 传统的联邦学习在数据异构(non-iid)的场景中很容易产生“客户漂移”(client-drift )的现象&#xff0c;这会导致系统的收敛不稳定或者缓慢。…...

第十四届蓝桥杯三月真题刷题训练——第 3 天

目录 题目1&#xff1a;门牌制作 题目描述 运行限制 代码&#xff1a; 题目2&#xff1a;货物摆放_long 题目描述 答案提交 运行限制 代码&#xff1a; 题目3&#xff1a;跳跃_dp 题目描述 输入描述 输出描述 输入输出样例 运行限制 代码&#xff1a; 题目4&a…...

变量的四大存储类型static extern auto register

变量的四大存储类型static extern auto register外部变量&#xff08;全局变量&#xff09;extern----全局静态存储区定义 引用性声明❗易错点&#xff1a;函数之外未定义的变量一般是外部变量 extern全局变量 与 局部变量的区别‼️ 谨记&#xff1a;声明可以多次&#xff0c;…...

JavaScript基础五、语句

零、文章目录 文章地址 个人博客-CSDN地址&#xff1a;https://blog.csdn.net/liyou123456789个人博客-GiteePages&#xff1a;https://bluecusliyou.gitee.io/techlearn 代码仓库地址 Gitee&#xff1a;https://gitee.com/bluecusliyou/TechLearnGithub&#xff1a;https:…...

青龙面板399乐园

1.拉库 ql raw https://wjkjy.cn/wp-content/uploads/2023/03/1678104978-afaecb98a9df61e.js 2.抓包 7.26 399乐园 每天 七八毛左右 脚本已完成全部任务&#xff0c;自动提现 下载链接&#xff1a;https://3mao.lanzoul.com/izGDh084oogh 抓包链接 https://339.mhhuanyue.c…...

自动化注册组件

// components/index.js export default { install(app) { const req require.context(‘./’, false, /.vue$/) // console.log(req, ‘req’) req.keys().forEach((item) > { // console.log(item, ‘item’) const com req(item).default // console.log(com, ‘com’)…...

【JS代码优化一】分支优化篇

序&#xff1a;如何让代码看起来更优雅&#xff1f;代码是由文字堆叠起来的可以被机器执行的程序。它记载着相关信息&#xff08;状态&#xff09;、表达相关的情绪&#xff08;函数&#xff09;&#xff0c;所以如何能够写出简洁、优雅、健壮、可维护性强的程序至关重要。本系…...

软件测试-接口测试-补充

文章目录 1.持续集成2. mock测试3.Fiddler 抓包工具3.1 弱网测试4. webservice1.持续集成 持续集成概念 重复执行开发提交代码并集成到主干; aim 加速产品迭代 好处 快速发现问题 避免分支大幅度偏离主干 加速产品发布 工具 git:源代码版本工具github:代码仓库jenkins:持续…...

Spring笔记(5):Beans自动装配

为什么需要使用自动装配 在通过XML配置文件进行设置Bean元素注入与声明注册后&#xff0c;我们能够发现一个问题&#xff0c;在项目中是会存在大量对象的&#xff0c;不可能全部都写在XML文件中&#xff0c;那会显得非常的臃肿&#xff0c;不利于后期维护&#xff0c;所以需要用…...

Spark+Vue+Springboot 协同过滤额音乐推荐大数据深度学习项目

一、项目背景 随着互联网的发展,大数据的到来,传统的音乐行业受到了很大的冲击,原有的音乐数字化给人们生活带来了极大的便利。随着数字音乐的兴起,各大音乐平台层出不穷,人们在音乐平台上收听音乐的时,常常因为歌曲信息繁杂,而不能找到自己想听的音乐。为了解决这个问题,音乐…...

JDBC的实现(IDEA版)

前期准备 开发环境&#xff1a; IDEA 2021.1.3 JAVA 1.8 MYSQL 8.0.32 msql用户名:root 密码&#xff1a;123 下载MySQL JDBC 驱动 前往MySQL官网下载对应版本的MySQL Connector/J驱动 &#xff08;下载地址&#xff1a;https://dev.mysql.com/downloads/connector/j/&#xff…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...