当前位置: 首页 > news >正文

OpenCV 图像重映射函数remap()实例详解

         OpenCV 图像重映射函数remap()对图像应用通用几何变换。其原型如下:

        void remap(InputArray  src, 

                             OutputArray dst,

                               InputArray  map1,

                               InputArray map2,

                                int   interpolation,

                                int borderMode = BORDER_CONSTANT,

                                const Scalar & borderValue = Scalar()

           )

   参数:

       src 源图像。

       dst 输出目标图像。它的大小与 map1 相同,类型与 src 相同。

       map1 (x,y) 点或仅 x 值的第一个映射具有 CV_16SC2 、 CV_32FC1 或 CV_32FC2                                 类型。

                    map2  y 值的第二个映射分别具有 CV_16UC1、CV_32FC1 类型或无类型(如果映射         1 是 (x,y) 点,则为空映射)。

                      interpolation 插值方法,可选:  INTER_NEAREST,                                                                                                                           INTER_LINEAR ,                                                                                                                              INTER_CUBIC,                                                                                                                                INTER_LANCZOS4,                                                                                                              INTER_NEAREST_EXACT                                                                                                                INTER_MAX                                                                                                                                      WARP_FILL_OUTLIERS ,                                                                     WARP_INVERSE_MAP 

                        borderMode 像素外推法。当 borderMode=BORDER_TRANSPARENT 时,意味                着目标图像中与源图像中的“异常值”相对应的像素不会被该函数修改。可为:BORDER_CONSTANT ,BORDER_REPLICATE,BORDER_REFLECT,BORDER_WRAP ,BORDER_REFLECT_101 ,BORDER_TRANSPARENT ,BORDER_REFLECT101 ,BORDER_DEFAULT,BORDER_ISOLATED

                        borderValue 在边界恒定的情况下使用的值。默认值为 0。

        OpenCV的remap函数的主要用途是重新映射图像中像素的位置或值。用它可以实现图像镜像、形态改变、特效制作、图像分割等。下面以例演示 其用法。先写一个示例程序,读入一张图片然后,用remap函数分别获取水平镜像图片,示例程序代码如下:

// RemapTest.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。#include<opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat src = imread("1.png");if (src.empty()){cout << "Cann't load Image!";return -1;}imshow("原始图像:",src);Mat srcx(src.rows, src.cols, CV_32F); // x 方向Mat srcy(src.rows, src.cols, CV_32F); // x 方向for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = src.cols - j - 1;srcy.at<float>(i, j) = i;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("水平镜像:", src);waitKey(0);return 1;
}

试运行,结果如下:

       获取垂直镜像,其代码如下:

// RemapTest.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。#include<opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat src = imread("1.png");if (src.empty()){cout << "Cann't load Image!";return -1;}imshow("原始图像:",src);Mat srcx(src.rows, src.cols, CV_32F); // x 方向Mat srcy(src.rows, src.cols, CV_32F); // x 方向//水平镜像/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = src.cols - j - 1;srcy.at<float>(i, j) = i;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("水平镜像:", src);*///垂直镜像for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j;srcy.at<float>(i, j) = src.rows -i -1;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("垂直镜像:", src);waitKey(0);return 1;
}

       试运行结果如下:

  再写一段改变图形形状的代码,代码如下:

// RemapTest.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。#include<opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat src = imread("1.png");if (src.empty()){cout << "Cann't load Image!";return -1;}imshow("原始图像:",src);Mat srcx(src.rows, src.cols, CV_32F); // x 方向Mat srcy(src.rows, src.cols, CV_32F); // x 方向//水平镜像/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = src.cols - j - 1;srcy.at<float>(i, j) = i;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("水平镜像:", src);*///垂直镜像/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j;srcy.at<float>(i, j) = src.rows -i -1;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("垂直镜像:", src);*///改变图像形状for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j;srcy.at<float>(i, j) = i + 5.0 * cos(i / 5.0);}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("改变图形形状:", src);waitKey(0);return 1;
}

       割裂效果呈现,实现的程序代码如下:

// RemapTest.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。#include<opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat src = imread("1.png");if (src.empty()){cout << "Cann't load Image!";return -1;}imshow("原始图像:",src);Mat srcx(src.rows, src.cols, CV_32F); // x 方向Mat srcy(src.rows, src.cols, CV_32F); // x 方向//水平镜像/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = src.cols - j - 1;srcy.at<float>(i, j) = i;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("水平镜像:", src);*///垂直镜像/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j;srcy.at<float>(i, j) = src.rows -i -1;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("垂直镜像:", src);*///改变图像形状/*for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j;srcy.at<float>(i, j) = i + 5.0 * cos(i / 5.0);}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("改变图形形状:", src);*///割裂效果呈现for (size_t i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){srcx.at<float>(i, j) = j + 10.0 * tan(j / 5.0);;srcy.at<float>(i, j) = i;}}remap(src, src, srcx, srcy, INTER_LINEAR);imshow("割裂效果:", src);waitKey(0);return 1;
}

 试运行,结果如下:

相关文章:

OpenCV 图像重映射函数remap()实例详解

OpenCV 图像重映射函数remap()对图像应用通用几何变换。其原型如下&#xff1a; void remap(InputArray src, OutputArray dst, InputArray map1, InputArray map2, int interpolation&#xff0c; int borderMode BORDER_CONSTANT&#xff0c; const Scalar & borde…...

Python基础课堂最后一课23——正则对象

文章目录 前言一、正则对象是什么&#xff1f;二、正则表达式基本分类1.普通字符2.元字符 总结 前言 很开心能和你们一些学习进步&#xff0c;在这一个多月的时间中&#xff0c;是你们让我坚持了下来&#xff0c;完成了python基础课堂编写&#xff0c;不管如何&#xff0c;我们…...

【算法训练营】凸包,图(Python实现)

凸包 描述 给定n个二维平面上的点&#xff0c;求他们的凸包。 输入 第一行包含一个正整数n。 接下来n行&#xff0c;每行包含两个整数x,y&#xff0c;表示一个点的坐标。 输出 令所有在凸包极边上的点依次为p1,p2,...,pm&#xff08;序号&#xff09;&#xff0c;其中m表…...

webpack5零基础入门-6webpack处理图片资源

1.在webpack5中file-loader和url-loader为内置模块 通过在加载器中配置rule即可激活 {test: /\.(png|jpe?g|gif|webp)$/,type: asset} 2.使用webpack进行打包 执行npx webpack 可以看到图片资源打包后都被放到了dist文件目录下 3.使用webpack进行图片格式转换为base64 优势…...

计算机基础知识QA

目录 数据库 --mysql 关联查询 唯一索引如何创建&#xff0c;语句 更新表字段语句 查看字段类型 --redis 使用场景 数据结构 设置超时时间 linux 常用命令 发布版本 安装一个东西&#xff0c;发现一个东西安装的很慢&#xff0c;如何切换ip地的源&#xff1f;-&g…...

微信小程序一次性订阅requestSubscribeMessage授权和操作详解

一次性订阅&#xff1a;用户订阅一次发一次通知 一、授权 — requestSubscribeMessage Taro.requestSubscribeMessage({tmplIds: [], // 需要订阅的消息模板的id的集合success (res) {console.log("同意授权", res)},fail(res) {console.log(拒绝授权, res)}})点击或…...

ARM 汇编指令:(三)运算处理指令

目录 一.add指令 二.sub指令 三.MUL指令 一.add指令 add用于执行实现两个寄存器或寄存机或寄存器与立即数的相加操作。它可以用于整数、浮点数等各种数据类型的加法运算。 ADD{cond}{S} Rd,操作数,操作数 1.不带进位加法指令add add r1, r2, #4 //r1 r2 4 add r1, r2 …...

【C++庖丁解牛】STL简介 | string容器初次见面

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1. 什么是STL2. STL的版本…...

记OnlyOffice的两个大坑

开发版&#xff0c;容器部署&#xff0c;试用许可已安装。 word&#xff0c;ppt&#xff0c;excel均能正常浏览。 自带的下载菜单按钮能用。 但config里自定义的downloadAs方法却不一而足。 word能正常下载&#xff0c;excel和ppt都不行。 仔细比对调试了代码。发现app.js…...

分享几个Google Chrome谷歌浏览器历史版本下载网站

使用selenium模块的时候&#xff0c;从官网下载的谷歌浏览器版本太高&#xff0c;驱动不支持&#xff0c;所以需要使用历史的谷歌浏览器版本 &#xff0c;这里备份一下以防找不到了。 驱动下载地址&#xff1a;https://registry.npmmirror.com/binary.html?pathchromedriver 文…...

备考2025年AMC8竞赛:吃透2000-2024年600道真题(免费赠送真题)

我们继续来随机看五道AMC8的真题和解析&#xff0c;根据实践经验&#xff0c;对于想了解或者加AMC8美国数学竞赛的孩子来说&#xff0c;吃透AMC8历年真题是备考最科学、最有效的方法之一。 即使不参加AMC8竞赛&#xff0c;吃透了历年真题600道和背后的知识体系&#xff0c;那么…...

考研复试C语言篇

第一章 概述 1.1什么是程序 为了让计算机执行某些操作或解决某个问题而编写的一系列有序指令的合集。 1.4C语言的特点 代码级别的跨平台&#xff1a;由于标准的存在&#xff0c;使得几乎同样的C代码可用于多种操作系统&#xff0c;也适用于多种机型。使允许直接访问物理地址…...

Docker架构深度解析:守护进程、客户端与存储驱动的协同作战(下)

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Docker幻想曲&#xff1a;从零开始&#xff0c;征服容器宇宙》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 四、命名空间和控制组 1、Linux命名空…...

【强化学习笔记一】初识强化学习(定义、应用、分类、性能指标、小车上山案例及代码)

文章目录 第1章 初识强化学习1.1 强化学习及其关键元素1.2 强化学习的应用1.3 强化学习的分类1.3.1 按任务分类1.3.2 按算法分类 1.4 强化学习算法的性能指标1.5 案例&#xff1a;基于Gym库的智能体/环境接口1.5.1 安装Gym库1.5.2 使用Gym库1.5.3 小车上山1.5.3.1 有限动作空间…...

安卓面试准备汇总

java相关 面试-java基础相关-CSDN博客 android 基础相关 安卓基础面试题-CSDN博客 kotlin相关 android pms,cms,wms相关知识 android fragmework层的知识 项目相关的...

C#+datax实现定时增量同步

要使用C#和DataX实现定时增量同步&#xff0c;你可以使用以下步骤&#xff1a; 1. 安装DataX&#xff1a;首先&#xff0c;确保你已经安装了DataX。你可以从DataX的官方仓库中获取最新版本。 2. 配置DataX 任务&#xff1a;创建一个DataX任务&#xff0c;定义源&#xff08;sou…...

VUE实现Provide的计算属性

通过此篇可以学到&#xff1a; 如何使用Providerinject进行“跨代”传值如何实现一个计算属性的Provider如何解决告警“injection "xxxxx" not found. ” 一、描述 目前需要创建一个计算属性传入Provide&#xff0c;并且能够被其他组件Inject 二、实现 父组件 .…...

Spring Schedule:Spring boot整合Spring Schedule实战讲解定时发送邮件的功能

&#x1f389;&#x1f389;欢迎光临&#xff0c;终于等到你啦&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;持续更新的专栏《Spring 狂野之旅&#xff1a;从入门到入魔》 &a…...

Midjourney绘图欣赏系列(十)

Midjourney介绍 Midjourney 是生成式人工智能的一个很好的例子&#xff0c;它根据文本提示创建图像。它与 Dall-E 和 Stable Diffusion 一起成为最流行的 AI 艺术创作工具之一。与竞争对手不同&#xff0c;Midjourney 是自筹资金且闭源的&#xff0c;因此确切了解其幕后内容尚不…...

【C语言】人生重开模拟器

前言&#xff1a; 人生重开模拟器是前段时间非常火的一个小游戏&#xff0c;接下来我们将一起学习使用c语言写一个简易版的人生重开模拟器。 网页版游戏&#xff1a; 人生重开模拟器 (ytecn.com) 1.实现一个简化版的人生重开模拟器 &#xff08;1&#xff09; 游戏开始的时…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

Canal环境搭建并实现和ES数据同步

作者&#xff1a;田超凡 日期&#xff1a;2025年6月7日 Canal安装&#xff0c;启动端口11111、8082&#xff1a; 安装canal-deployer服务端&#xff1a; https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...