当前位置: 首页 > news >正文

【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

参考文献:

 风光等可再生能源出力的不确定性和相关性给系统的设计带来了极大的复杂性,若忽略这些因

素,势必会在系统规划阶段引入次优决策风险[24]。因此,在确定系统最佳配置方案时,必须要考虑风光出力的不确定性和相关性。 Copula 函数可以描述随机变量间的相关性,是把随机变量的联合分布函数与各自的边缘分布函数相连接的函数。其主要包括椭圆分布族 Copula函数(Normal-Copula、t-Copula)和阿基米德分布族Copula 函 数 [25](Frank-Copula 、 Gumbel-Copula 、Clayton-Copula)。Copula 函数的选取对刻画风光出力的相关性至关重要,然而选择何种 Copula 函数取决于规划区域的风光出力特性。由于 t-Copula 对多维随机变量拟合极为耗时且 Gumbel-Copula 形式复杂,因此本文仅考虑其余 3 种 Copula 函数。

      为了选择最佳的 Copula 函数拟合风光出力特性,引入 Spearman 秩相关系数[26]、Kendall 秩相关系数及欧式距离等指标并计算风光出力的 Empirical (经验)-Copula 函数[27],具体详见文献[26-27]。所选Copula 函数的秩相关系数越接近 Empirical-Copula函数的秩相关系数,且与其欧式距离较小者认为是最佳的。本文选取规划区 2011 年全年风机与光伏标幺化出力数据,见附录 A 图 A1,分别用 Normal Copula、Frank-Copula、Clayton-Copula 函数拟合风光出力并计算风光出力的 Empirical-Copula 函数,求得其秩相关系数及与 Empirical-Copula 函数的欧式距离如表 1 所示。

 Sklar在1959年提出的Sklar定理指出,一个N维分量的联合分布函数可以由这N个变量的边缘分布和1个 Copula函数来描述[11] ,即Copula函数可以将多变量的联合分布与这N个变量的边缘分布连接起来,因此也称为“连接函数”。Sklar定理表达式如下:

Sklar定理证明了Copula函数的存在性,描述了多元联合分布密度函数与Copula密度函数的关系,为建模奠定了基础。

Copula函数主要分为椭圆函数族(Ellipse-Copula)和阿基米德函数族(Archimedean-Copula)2种类型。其中,椭圆函数族包括正态Copula函数和t-Copula函数,阿基米德函数族中常用的有Gumbel-Copula函数、Clayton-Copula函数和Frank-Copula函数[12] 。不同类型的Copula函数具有不同的函数结构,因其尾部特征的差异适用于刻画不同类型的相依关系,具体特性如表1 所示。

 

来源: 

  

上节所述5种Copula函数适用于描述具有尖峰厚尾特性的数据,首先对风电场数据进行分析,统计同一地区2个典型风电场1个月的数据,分布特性如图1所示。图1中横坐标代表出力标幺值,纵坐标代表概率密度。由图1可知,风电场输出功率统计数据也具有尖峰厚尾的特性,即大量数据集中在某一区间,频数特别高,而其他数据广泛分布于各个区间,范围广。因此Copula函数及建模方法适用于风电场出力数据。为了对同一地区2个风电场联合出力及相关性有一个直观的认识,便于分析,作2个风电场的联合分布统计图,如图2所示。

由图2可知,大量数据集中在主对角线上,同一地区2个风电场出力呈现出很强的正相关性,依据这种相关特性建立Copula模型可以有效描述同一地区2个风电场的出力特性及其相关性。

📚2 运行结果

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]林顺富,刘持涛,李东东等.考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J].中国电机工程学报,2020,40(05):1409-1421.DOI:10.13334/j.0258-8013.pcsee.190275.

[2]宋宇,李涵.基于核密度估计和Copula函数的风、光出力场景生成[J].电气技术,2022,23(01):56-63.

[3]段偲默,苗世洪,李力行,韩佶,晁凯云,范志华.基于Copula理论的风光联合出力典型场景生成方法[J].供用电,2018,35(07):13-19.DOI:10.19421/j.cnki.1006-6357.2018.07.003.

🌈4 Matlab代码实现

相关文章:

【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【java基础】泛型程序设计基础

文章目录泛型是什么自定义泛型类自定义泛型方法类型变量的限定总结泛型是什么 泛型类和泛型方法有类型参数,这使得它们可以准确地描述用特定类型实例化时会发生什么。在没有泛型类之前,程序员必须使用Objct编写适用于多种类型的代码。这很烦琐&#xff…...

【省选模拟测试23 T1直径】更好的做法

题目大意和普通做法 省选模拟测试23 T1直径 题解 对于上文中有三个儿子的根节点的树,其直径数量为abbccaabbccaabbcca。那么对于上文中有nnn个儿子的根节点的树,其直径数量为多少呢? 每个儿子所在子树中的点与其他儿子所在子树中的点都能组…...

SpringCloud基础(3)-微服务远程调用

SpringCloud基础1. 微服务的远程调用2. Eureka注册中心1. 搭建Eureka服务注册中心1. 微服务的远程调用 服务提供者:一次业务中被其它服务调用的一方; 服务消费者:一次业务中调用其它服务的一方; 2. Eureka注册中心 记录所有服务…...

10.单点登录原理及JWT实现

单点登录原理及JWT实现 一、单点登录效果 首先我们看通过一个具体的案例来加深对单点登录的理解。案例地址:https://gitee.com/xuxueli0323/xxl-sso?_fromgitee_search 把案例代码直接导入到IDEA中 然后分别修改下server和samples中的配置信息 在host文件中配置 …...

图表控件LightningChart.NET 系列教程(十一):LightningChart 组件——添加至 Blend WPF 项目

LightningChart.NET 是一款高性能 WPF 和 Winforms 图表,可以实时可视化多达1万亿个数据点。可有效利用CPU和内存资源,实时监控数据流。同时,LightningChart使用突破性创新技术,以实时优化为前提,大大提升了实时渲染的效率和效果&…...

libGDX:灯光效果实现一(实现一个点光源)

国内的libGDX文章很少,特别是libGDX实现灯光效果,所以就开始总结灯光效果的实现 绿色的框 是为了方便看到Body位置,使用Box2DDebugRenderer渲染的 工欲善其事,必先利其器,工具集合 gdx-setup.jar 1. 从libGDX官网下载…...

Java生态/Redis中如何使用Lua脚本

文章目录一、安装LUA1)简单使用二、lua语法简介1、注释1)单行注释2)多行注释2、关键字3、变量1)全局变量2)局部变量4、数据类型1)Lua数组2)字符串操作5、if-else6、循环1)for循环1&g…...

网络编程 socket 编程(一)

1. C/S 架构 C/S 架构即客户端/服务端架构,B/S 架构(浏览器与服务端)也是 C/S 架构的一种。 C/S 架构与 socket 的关系:学习 socket 可以完成 C/S 架构的开发。 2. osi 七层 一个完整的计算机系统由硬件、操作系统以及应用软件…...

【SpringCloud】SpringCloud教程之Nacos实战(一)

目录Nacos是什么?一.Nacos下载二.安装Nacos三.Nacos原理四.Nacos快速入门五.Nacos服务多级存储模式六.Nacos根据集群设置负载均衡1.根据同集群优先访问2.根据权重配置负载均衡七.Nacos的环境隔离八.Nacos和Eureka的区别前提:以订单服务和用户服务为例&am…...

高通Android 12/13 默认应用程序授予权限

1、一提到权限很多Android开发者都会想到 比如拨打电话 读取手机通讯录 定位 这些都是需要申请权限,Google Android 6.0之后(sdk 23) 需要app动态申请权限 或者权限组 2、我这里打个比方 比如需要在fm应用 默认打开mic权限 3、我们需要知道…...

代码随想录|day6|哈希表篇-- 242.有效的字母异位词 、349. 两个数组的交集 、202. 快乐数、1. 两数之和

总链接https://docs.qq.com/doc/DUEtFSGdreWRuR2p4?u329948d2f0044f34b7cbe72503f0b572 242.有效的字母异位词 链接:代码随想录 class Solution { public:bool isAnagram(string s, string t) {//两种做法,一种是int f[26]的数组,一种是map /*第一种&a…...

k8s学习之路 | Day20 k8s 工作负载 Deployment(下)

文章目录3. HPA 动态扩缩容3.1 HPA3.2 安装 metrics-server3.3 验证指标收集3.4 扩缩容的实现3.5 增加负载3.6 降低负载3.7 更多的度量指标4. 金丝雀部署4.1 蓝绿部署4.2 金丝雀部署4.3 金丝雀部署的实现5. Deployment 状态与排查5.1 进行中的 Deployment5.2 完成的 Deployment…...

考研复试——操作系统

文章目录操作系统1. 操作系统的特征:2. 进程与线程的关系以及区别3. 简述进程和程序的区别4. 进程的常见状态?以及各种状态之间的转换条件?5. 进程的调度算法有哪些?6. 什么是死锁?产生条件?如何避免死锁&a…...

Java ~ Collection/Executor ~ LinkedBlockingDeque【源码】

一 LinkedBlockingDeque(链接阻塞双端队列)类源码及机制详解 类 LinkedBlockingDeque(链接阻塞双端队列)类(下文简称链接阻塞双端队列)是BlockingDeqeue(阻塞双端队列)接口的唯一实现…...

【前缀和】截断数组、K倍区间、激光炸弹

Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...

函数编程:强大的 Stream API

函数编程:强大的 Stream API 每博一文案 只要有人的地方,世界就不会是冰冷的,我们可以平凡,但绝对不可以平庸。—————— 《平凡的世界》人活着,就得随时准备经受磨难。他已经看过一些书,知道不论是普通…...

企业架构图之业务架构图

在TOGAF的世界里面,所有的架构思想都可以通过下面三种类型的图形进行表示。 目录(Catalogs)矩阵(Matrix)图 (Diagram) 其架构图的本质就是用来进行沟通交流,通过架构图和业务团队进…...

监控易网络管理:网络流量分析

1、什么是网络流量分析2、网络流量分析的作用3、为什么要用网络流量分析功能,如何开启什么是网络流量分析简单的来说,网络流量分析就是捕捉网络中流动的数据包,并通过查看包内部数据以及进行相关的协议、流量、分析、统计等,协助发…...

RHCSA-文件内容显示(3.6)

查看命令 cat:显示文件内容 cat -n:显示文件内容的同时显示编号 tac:倒叙查看 head 文件名 (默认显示前10行):显示前10行 tail:显示末尾行数信息 more:查看文件信息,从头…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...