当前位置: 首页 > news >正文

从源码的角度告诉你 spark是怎样完成对文件切片

目录

1.说明

2.怎样设置默认切片数

2.1 RDD默认切片设置

2.2 SparkSQL默认切片设置

3. makeRDD 切片原理

4. textFile 切片原理

4.1 切片规则

4.2 怎样设置切片大小

4.3 测试代码

 5.hadoopFile 切片原理

5.1 说明

5.2 切片规则

5.3 怎样设置切片大小

5.4 代码测试

5.5 minPartitions 在 CombineTextInputFormat 中的作用?

5.6 重点关注


1.说明

在spark中为我们提供了用来读取数据的方法
    比如 makeRDD、parallelize、textFile、hadoopFile等方法
    
这些方法按照数据源可以分为两类 文件系统、Driver内存中的集合数据
当我们使用指定的方法读取数据后,会按照指定的切片个数对文件进行切片


2.怎样设置默认切片数

在我们在使用RDD的算子时,经常会遇到可以显式的指定切片个数,或者隐式的使用默认切片个数,下面会告诉我们,怎样设置默认切片个数

2.1 RDD默认切片设置

1.驱动程序中设置
val sparkconf: SparkConf = new SparkConf().setAppName("测试默认切片数").set("spark.default.parallelism","1000").setMaster("local[100]")2.spark-shell或spark-submit 设置
spark-shell \
--master yarn \
--name "spark-shell-tmp" \
--conf spark.default.parallelism=1000 \
--driver-memory 40G \
--executor-memory 40G \
--num-executors 40 \
--executor-cores 6 \3.不指定 spark.default.parallelism 参数时,将使用默认值local模式:local[100] :  100local      :  客户端机器核数集群模式(yarn):2 或者 核数总和

源码:

查看默认切片数: 

// 获取默认切片数
val parallelism = sc.defaultParallelism

2.2 SparkSQL默认切片设置

-- 设置默认切片数
set spark.sql.shuffle.partitions=1000;默认值:当不设置时,默认为200注意:spark.default.parallelism 只有在处理RDD时才会起作用,对SparkSQL的无效spark.sql.shuffle.partitions 则是对sparks SQL专用的设置

3. makeRDD 切片原理

可用通过 makeRDD算子 将Driver中序列集合中数据转换成RDD,在转换的过程中,会根据指定的切片个数集合索引对集合切片

切片规则:

        根据集合长度切片数将集合切分成若干子集合(和集合元素内容无关)

示例代码:

  test("makeRDD - 切片逻辑") {// 初始化 spark配置实例val sparkconf: SparkConf = new SparkConf().setMaster("local[4]").setAppName("")// 初始化 spark环境对象val sc: SparkContext = new SparkContext(sparkconf)val rdd: RDD[(String, String)] = sc.makeRDD(List(("张飞1", "张飞java scala spark"), ("张飞2", "张飞java scala spark"), ("刘备3", "刘备java spark"), ("刘备4", "刘备java scala spark"), ("刘备5", "刘备scala spark"), ("关羽6", "关羽java scala spark"), ("关羽7", "关羽java scala"), ("关羽8", "关羽java scala spark"), ("关羽9", "关羽java spark")))// 查看每个分区的内容rdd.mapPartitionsWithIndex((i, iter) => {println(s"分区编号$i :${iter.mkString(" ")}");iter}).collect()rdd.getNumPartitionssc.stop()}

结果:

源码阅读:

1. 通过SparkContext创建rdd
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}2. ParallelCollectionRDD类中的 getPartitions方法
override def getPartitions: Array[Partition] = {val slices = ParallelCollectionRDD.slice(data, numSlices).toArrayslices.indices.map(i => new ParallelCollectionPartition(id, i, slices(i))).toArray
}3. ParallelCollectionRDD对象的slice方法(核心切片逻辑)def slice[T: ClassTag](seq: Seq[T], numSlices: Int): Seq[Seq[T]] = {// 对切片数做合法性校验if (numSlices < 1) {throw new IllegalArgumentException("Positive number of partitions required")}// TODO 通过 集合长度和切片数 获取每个切片的位置信息// 从这可以得出 对集合的切片只和 集合索引和切片数相关,和集合内容无关// 将 集合索引按照切片数 切分成若干元素def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {(0 until numSlices).iterator.map { i =>val start = ((i * length) / numSlices).toIntval end = (((i + 1) * length) / numSlices).toInt(start, end)}}// 对集合类型做判断seq match {case r: Range =>positions(r.length, numSlices).zipWithIndex.map { case ((start, end), index) =>// If the range is inclusive, use inclusive range for the last sliceif (r.isInclusive && index == numSlices - 1) {new Range.Inclusive(r.start + start * r.step, r.end, r.step)} else {new Range.Inclusive(r.start + start * r.step, r.start + (end - 1) * r.step, r.step)}}.toSeq.asInstanceOf[Seq[Seq[T]]]case nr: NumericRange[T] =>// For ranges of Long, Double, BigInteger, etcval slices = new ArrayBuffer[Seq[T]](numSlices)var r = nrfor ((start, end) <- positions(nr.length, numSlices)) {val sliceSize = end - startslices += r.take(sliceSize).asInstanceOf[Seq[T]]r = r.drop(sliceSize)}slices.toSeqcase _ =>val array = seq.toArray // To prevent O(n^2) operations for List etcpositions(array.length, numSlices).map { case (start, end) =>array.slice(start, end).toSeq}.toSeq}
}

4. textFile 切片原理

textFile使用的MapReduce框架中TextInputFormat类完成对文件切片和读取切片中数据

4.1 切片规则

1.对job输入路径中的每个文件单独切片
2.判断每个文件是否支持切片
         true : 按照指定切片大小对文件切片
         false: 文件整体作为一个切片 

4.2 怎样设置切片大小

// 切片大小计算规则splitSize = Math.max(minSize, Math.min(goalSize, blockSize))// 参数说明1.minSizeset mapreduce.input.fileinputformat.split.minsize=256000000 或 set mapred.min.split.size=256000000默认值 minSize=1L2.goalSizegoalSize=所有文件大小总和/指定的切片个数3.blockSize本地目录32M|HDFS目录128M或256M(看hdfs文件块具体配置)// 需求 1.真实切片大小 < blockSizegoalSize=所有文件大小总和/指定的切片个数 < blockSize 即(创建rdd时调大切片个数)2.真实切片大小 > blockSizeset mapreduce.input.fileinputformat.split.minSize=大于blockSize值

4.3 测试代码

  test("textFile - 切片逻辑") {// 初始化 spark配置实例val sf: SparkConf = new SparkConf().setMaster("local[4]").setAppName("Test textFile")// 初始化 spark环境对象val sc: SparkContext = new SparkContext(sf)sc.hadoopConfiguration.setInt("mapred.min.split.size", 469000000)// sc.hadoopConfiguration.setInt("mapreduce.input.fileinputformat.split.minsize", 256000000)// 读取目录下的所有文件val rdd: RDD[String] = sc.textFile("src/main/resources/data/dir/dir3/LOL.map", 1000)// 打印分区个数println("切片个数:"+rdd.getNumPartitions)sc.stop()}

执行结果:


 5.hadoopFile 切片原理

5.1 说明

def hadoopFile[K, V](path: String,inputFormatClass: Class[_ <: InputFormat[K, V]],keyClass: Class[K],valueClass: Class[V],minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {assertNotStopped()功能:读取HDFS文件或本地文件来创建RDD(使用MapReduce框架中InputFormat类)参数:path: 指定job的输入路径inputFormatClass: 对输入文件切片和读取的实现类keyClass: key的数据类型valueClass: value的数据类型minPartitions: 最小切片数

5.2 切片规则

根据指定的切片大小进行切片,允许将多个文件合并成换一个切片对象

5.3 怎样设置切片大小

指定切片大小(默认值Long.MaxValue)
set mapred.max.split.size=切片大小 或
set mapreduce.input.fileinputformat.split.maxsize=切片大小

5.4 代码测试

  test("spark中使用 CombineTextInputFormat") {// 初始化 spark配置实例val sf: SparkConf = new SparkConf().setMaster("local[4]").setAppName("")// 初始化 spark环境对象val sc: SparkContext = new SparkContext(sf)// 读取目录下的所有文件val input = "src/main/resources/data/dir/dir3"val combineRDD: RDD[(LongWritable, Text)] = sc.hadoopFile[LongWritable, Text, org.apache.hadoop.mapred.lib.CombineTextInputFormat](input, 10000)//    val combineRDD: RDD[(LongWritable, Text)] = sc.hadoopFile[LongWritable, Text//      , org.apache.hadoop.mapred.TextInputFormat](input, 10000)sc.hadoopConfiguration.setInt("mapred.max.split.size", 128000000)//sc.hadoopConfiguration.setInt("mapreduce.input.fileinputformat.split.maxsize", 128000000)println("切片个数:" + combineRDD.getNumPartitions)//combineRDD.map(_._2.toString).foreach(println(_))//combineRDD.collect()//combineRDD.hadsc.stop()}

执行结果:

5.5 minPartitions 在 CombineTextInputFormat 中的作用?

CombineTextInputFormat切片逻辑和 最小切片数(minPartitions)  无关

查看 org.apache.hadoop.mapred.lib.CombineTextInputFormat类 getSplits方法
TODO: numSplits指定的切片个数,并没有使用public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {List<org.apache.hadoop.mapreduce.InputSplit> newStyleSplits =super.getSplits(Job.getInstance(job));InputSplit[] ret = new InputSplit[newStyleSplits.size()];for(int pos = 0; pos < newStyleSplits.size(); ++pos) {org.apache.hadoop.mapreduce.lib.input.CombineFileSplit newStyleSplit = (org.apache.hadoop.mapreduce.lib.input.CombineFileSplit) newStyleSplits.get(pos);ret[pos] = new CombineFileSplit(job, newStyleSplit.getPaths(),newStyleSplit.getStartOffsets(), newStyleSplit.getLengths(),newStyleSplit.getLocations());}return ret;}

5.6 重点关注

对计算任务而言,合并小文件是一把双刃剑,合并小文件后 就舍弃了数据本地化,则加了网络IO的开销,需要根据实际情况合理的选择 切片策略

CombineTextInputFormat源码参考:​​​​​​​https://blog.csdn.net/wawmg/article/details/17095125

相关文章:

从源码的角度告诉你 spark是怎样完成对文件切片

目录 1.说明 2.怎样设置默认切片数 2.1 RDD默认切片设置 2.2 SparkSQL默认切片设置 3. makeRDD 切片原理 4. textFile 切片原理 4.1 切片规则 4.2 怎样设置切片大小 4.3 测试代码 5.hadoopFile 切片原理 5.1 说明 5.2 切片规则 5.3 怎样设置切片大小 5.4 代码测试…...

剑指 Offer II 019. 最多删除一个字符得到回文

题目链接 剑指 Offer II 019. 最多删除一个字符得到回文 easy 题目描述 给定一个非空字符串 s&#xff0c;请判断如果 最多 从字符串中删除一个字符能否得到一个回文字符串。 示例 1: 输入: s “aba” 输出: true 示例 2: 输入: s “abca” 输出: true 解释: 可以删除 “c”…...

RK3568驱动OV13850摄像头模组调试过程

摄像头介绍品牌&#xff1a;Omnivision型号&#xff1a;CMK-OV13850接口&#xff1a;MIPI像素&#xff1a;1320WOV13850彩色图像传感器是一款低电压、高性能1/3.06英寸1320万像素CMOS图像传感器&#xff0c;使用OmniBSI?技术提供了单-1320万像素&#xff08;42243136)摄像头的…...

Go项目的目录结构基本布局

前言 随着项目的代码量在不断地增长&#xff0c;不同的开发人员按自己意愿随意布局和创建目录结构&#xff0c;项目维护性就很差&#xff0c;代码也非常凌乱。良好的目录与文件结构十分重要&#xff0c;尤其是团队合作的时候&#xff0c;良好的目录与文件结构可以减少很多不必要…...

CHAPTER 1 Linux Filesystem Management

Linux Filesystem Management1 文件系统是什么2 文件系统的组成3 inode详解1. inode到底是什么2. inode的内容3. inode的大小4. inode的号码5. 硬链接6. 软链接4 存储区域5 常见文件系统的类型1. 根文件系统2. 虚拟文件系统3. 真文件系统4. 伪文件系统5. 网络文件系统1 文件系统…...

RocketMQ架构篇 - 读写队列与生产者如何选择队列

读、写队列 创建主题时&#xff0c;可以指定 writeQueueNums&#xff08;写队列的个数&#xff09;、readQueueNums&#xff08;读队列的个数&#xff09;。生产者发送消息时&#xff0c;使用写队列的个数返回路由信息&#xff1b;消费者消费消息时&#xff0c;使用读队列的个…...

华为OD机试真题Python实现【通信误码】真题+解题思路+代码(20222023)

通信误码 题目 信号传播过程中会出现一些误码,不同的数字表示不同的误码 ID,取值范围为 1~65535,用一个数组记录误码出现的情况,每个误码出现的次数代表误码频度,请找出记录中包含频度最高误码的最小子数组长度。 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD…...

【单目3D目标检测】MonoDDE论文精读与代码解析

文章目录PrefacePros and ConsAbstractContributionsPreliminaryDirect depth estimationDepth from heightPespective-n-point&#xff08;PnP&#xff09;PipelineDiverse Depth EstimationsRobust Depth CombinationOutput distributionSelecting and combining reliable de…...

复习 Kotlin 从小白到大牛 第二版 笔记要点

4.2.2 常量和只读变量 常量和只读变量一旦初始化就不能再被修改。在kotlin中&#xff0c;声明常量是在标识符的前面加上val或const val 关键字。 1. val 声明的是运行时变量&#xff0c;在运行时进行初始化 2.const val 声明的是编译时常量&#xff0c;在编译时初始化 val …...

X264简介-Android使用(二)

X264简介-Android使用&#xff08;二&#xff09; 4、Ubuntu上安装ffmpeg&#xff1a; 检查更新本地软件包&#xff08;如果未更新&#xff0c;reboot Vmware&#xff09;&#xff1a; sudo apt update sudo apt upgrade官网下载的source文件安装&#xff1a; http://ffmpe…...

【独家】华为OD机试 - 统计差异值大于相似值二元组个数(C 语言解题)

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 最近更新的博客使用说明本期…...

掌握好Framework 才是王道~

现在面试对Android开发者的要求越来越高了&#xff01;从最开始的阿里、头条、腾讯等大厂&#xff0c;到现在的互联网车企&#xff0c;面试总喜欢问道 Framework底层原理的相关问题 Android Framework的三大核心功能&#xff1a; 1、View.java:View工作原理&#xff0c;实现包…...

Codeforces Round 856 (Div. 2) A — C

Codeforces Round 856 (Div. 2) 文章目录A. Prefix and Suffix Array题目大意题目分析codeB. Not Dividing题目大意题目分析codeC. Scoring Subsequences题目大意题目分析codeA. Prefix and Suffix Array 题目大意 给出一个字符串所有的非空前后缀&#xff0c;判断原字符串是…...

2022年MathorCup数学建模B题无人仓的搬运机器人调度问题解题全过程文档加程序

2022年第十二届MathorCup高校数学建模 B题 无人仓的搬运机器人调度问题 原题再现 本题考虑在无人仓内的仓库管理问题之一&#xff0c;搬运机器人 AGV 的调度问题。更多的背景介绍请参看附件-背景介绍。对于无人仓来说&#xff0c;仓库的地图模型可以简化为图的数据结构。 仓库…...

开源项目的演进会遇到哪些“坑”?KubeVela 从发起到晋级 CNCF 孵化的全程回顾

作者&#xff1a;孙健波、曾庆国 点击查看&#xff1a;「开源人说」第五期《KubeVela&#xff1a;一场向应用交付标准的冲锋》 2023 年 2 月&#xff0c;**KubeVela [ 1] ** 经过全体 ToC 投票成功进入 CNCF Incubation&#xff0c;是云原生领域首个晋级孵化的面向应用的交付…...

MSDP实验配置

目录 配置MSDP 配置PIM SM协议 配置各PIM SM域内的静态RP 配置MSDP对等体 配置域内的MSDP对等体 AR8和AR9建立EBGP邻居 配置域间的MSDP对等体 进行实验验证 什么是MSDP MSDP&#xff08;Multicast Source Discovery Protocol&#xff09;组播源发现协议的简称 用来传递…...

惊!初中生也来卷了……

大家好&#xff0c;我是良许。 前两天在抖音直播的时候&#xff0c;突然来了一位不速之客…… 他自称是初中生&#xff0c;一开始我还有点不太相信&#xff0c;直到跟他连麦&#xff0c;听到他还略带一些稚嫩的声音&#xff0c;我才知道&#xff0c;他没有骗我…… 他说他想学…...

kafka相关配置介绍

kafka默认配置 每个kafka broker中配置文件server.properties默认必须配置的属性如下&#xff1a; broker.id0 num.network.threads2 num.io.threads8 socket.send.buffer.bytes1048576 socket.receive.buffer.bytes1048576 socket.request.max.bytes104857600 log.dirs/tmp/…...

【PyTorch】教程:torch.nn.Hardtanh

torch.nn.Hardtanh 原型 CLASS torch.nn.Hardtanh(min_val- 1.0, max_val1.0, inplaceFalse, min_valueNone, max_valueNone) 参数 min_val ([float]) – 线性区域的最小值&#xff0c;默认为 -1max_val ([float]) – 线性区域的最大值&#xff0c;默认为 1inplace ([bool]) …...

神垕古镇景区5A级十年都没有实现的三大主因

钧 瓷 内 参 第40期&#xff08;总第371期&#xff09; 2023年3月5日 神垕古镇景区5A级十年都没有实现的三大主因 这是2013年&#xff0c;禹州市市政府第一次提出创建5A级景区到今年三月份整整十年啊&#xff01; 目前神垕古镇景区是4A级景区&#xff0c;5A级一直进行中&a…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...