当前位置: 首页 > news >正文

Codeforces Round 932(div2)||ABD

A-Entertainment in MAC

题意

可以对一个字符串进行两种操作:

  1. 将字符串反转
  2. 将该字符串反转后接在原串的后面。

可以进行任意次上述操作,获得字典序最小的字符串。

数据范围

t ( 1 ≤ t ≤ 500 ) t(1≤t≤500) t(1t500)

n ( 2 ≤ n ≤ 1 0 9 ) n(2≤n≤10^9) n(2n109)

s ( 1 ≤ ∣ s ∣ ≤ 100 ) s(1\le |s|\le 100) s(1s100)

思路

对比反转前后的字符串字典序大小,再决定是操作1还是操作2

参考代码

void solve() {ll n;cin >> n;string s;cin >> s;string t = s;reverse(t.begin(), t.end());if (s > t) {cout << t << s << endl;}else {cout << s << endl;}
}

B-Informatics in MAC

题意

M E X MEX MEX:不属于该数组的最小非负整数。

对一个数组分成 k k k个子段,要求每段的 M E X MEX MEX都等于相同的数。

找到这样的子段分法,或者报告不存在合法的分法。

数据范围

t ( 1 ≤ t ≤ 1 0 4 ) t(1≤t≤10^4) t(1t104)

n ( 2 ≤ n ≤ 1 0 5 ) n(2≤n≤10^5) n(2n105)

a i ( 0 ≤ a i < n ) a_i(0\le a_i\lt n) ai(0ai<n)

思路

假设 M E X = 2 MEX=2 MEX=2,则分成 k k k段的方式为前 k − 1 k-1 k1段只要都出现过 0 , 1 0,1 0,1就进行分段,最后一段保证含 0 , 1 0,1 0,1和达到第 n n n个数。

确定 M E X MEX MEX:遍历数组 a a a,找到最小的没有出现过的数(该数不大于 n n n),该数即为 M E X MEX MEX

参考代码

// MEX:不属于该数组的最小非负整数void solve() {ll n;cin >> n;vector<ll>a(n + 1);vector<bool>ck(n + 1, false);for (int i = 1;i <= n;i++) {ll x;cin >> x;a[i] = x;ck[x] = true;}bool f = false;int y = -1;for (int i = 0;i < n;i++) {if (ck[i] == false) {y = i;f = true;break;}}if (!f) {cout << -1 << endl;return;}// MEX=y// cout << y << endl;if (y == 0) {cout << n << endl;for (int i = 1;i <= n;i++) {cout << i << ' ' << i << endl;}return;}int p = 1;int cnt = 0;vector<pair<int, int>>ans;vector<bool>hs(y, false);vector<bool>hsf(y, false);for (int i = 1;i <= n;i++) {if (a[i] < y && !hs[a[i]]) {hs[a[i]] = true;cnt++;}if (cnt == y) {ans.push_back({ p, i });p = i + 1;cnt = 0;// 会不会Tlehs = hsf;}}if (ans.size() == 1) {cout << -1 << endl;return;}cout << ans.size() << endl;for (int i = 0;i < ans.size();i++) {if (i != ans.size() - 1)cout << ans[i].first << " " << ans[i].second << endl;else {cout << ans[i].first << " " << n << endl;}}}

D-Exam in MAC

题意

有一个集合 s s s

找到满足 0 ≤ x ≤ y ≤ c 0\le x\le y\le c 0xyc x + y x+y x+y y − x y-x yx均不包含在集合 s s s中的整数对 ( x , y ) (x,y) (x,y)的个数。

数据范围

t ( 1 ≤ t ≤ 2 × 1 0 4 ) t(1≤t≤2\times 10^4) t(1t2×104)

n ( 1 ≤ n ≤ 3 × 1 0 5 ) n(1≤n≤3\times 10^5) n(1n3×105)

c ( 1 ≤ c ≤ 1 0 9 ) c(1\le c\le 10^9) c(1c109)

思路

容斥。

合格的整数对=满足 x + y ∈ s x+y\in s x+ys+满足 y − x ∈ s y-x\in s yxs-既满足 x + y ∈ s x+y\in s x+ys又满足 y − x ∈ s y-x\in s yxs

参考代码

void solve() {ll n, c;cin >> n >> c;ll tot = (c + 1) * (c + 2) / 2;ll cnt0 = 0, cnt1 = 0;for (ll i = 0;i < n;i++) {ll x;cin >> x;tot -= x / 2 + 1;tot -= c + 1 - x;if (x & 1)cnt1++;else cnt0++;}tot += (cnt0 + 1) * cnt0 / 2 + cnt1 * (cnt1 + 1) / 2;cout << tot << endl;
}

相关文章:

Codeforces Round 932(div2)||ABD

A-Entertainment in MAC 题意 可以对一个字符串进行两种操作&#xff1a; 将字符串反转将该字符串反转后接在原串的后面。 可以进行任意次上述操作&#xff0c;获得字典序最小的字符串。 数据范围 t ( 1 ≤ t ≤ 500 ) t(1≤t≤500) t(1≤t≤500) n ( 2 ≤ n ≤ 1 0 9 ) n…...

基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真。太阳黑子是人们最早发现也是人们最熟悉的一种太阳表面活动。因为太阳内部磁场发生变化&#xff0c;…...

VSCode配置cuda C++编程代码提示的详细步骤

目录 VSCode配置cuda C++编程代码提示的详细步骤: 1、cuda编译环境的安装:...

JUnit 面试题及答案整理,最新面试题

JUnit中的断言&#xff08;Assert&#xff09;有哪些类型&#xff1f; JUnit提供了多种断言类型来帮助测试代码的正确性。常见的断言类型包括&#xff1a; 1、assertEquals&#xff1a; 用于检查两个值是否相等。如果不相等&#xff0c;测试失败。 2、assertTrue和assertFal…...

使用Lua编写Wireshark解析ProtoBuf插件

文章目录 Wireshark Protobuf Lua-dissectorStep 1: 获取 WiresharkStep 2: 配置ProtoBuf相关设置添加ProtoBuf查找路径 Step 3 运行和调试Lua代码1. 添加Lua脚本2. 运行和调试 Step 4: 写Lua Dissector代码 :)Step 5(Optional): Decode AsGithub工程地址 Wireshark Protobuf L…...

ClickHouse副本节点数据损坏恢复

参考链接&#xff1a;https://blog.csdn.net/qq_42082701/article/details/127771766 参考链接&#xff1a;https://kb.altinity.com/altinity-kb-setup-and-maintenance/suspiciously-many-broken-parts/ # 背景CK配置为1分片2副本# 配置参数,这里我们将max_suspicious_brok…...

YOLOv9改进策略:注意力机制 | SimAM(无参Attention),效果秒杀CBAM、SE

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文改进内容&#xff1a;SimAM是一种轻量级的自注意力机制&#xff0c;其网络结构与Transformer类似&#xff0c;但是在计算注意力权重时使用的是线性层而不是点积 yolov9-c-CoordAtt summary: 972 layers, 51024476 parameters, 510…...

宝塔 安装对外服务Tomcat和JDK

一、安装Tomcat\JDK 切记1&#xff1a;如果选择下载节点失败&#xff0c;请到软件商城安装 。 切记2&#xff1a;提醒安装Nginx或Apache &#xff0c;先点安装&#xff0c;进入再打叉关闭。因为Tomcat服务足够为我们搭建JavaWeb网站服务了。 切记3&#xff1a;Nginx占用80端口…...

rust最新版本安装-提高下载速度

1&#xff09;拉取依赖包将安装脚本输出到本地rust.sh脚本中 curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs > rust.sh 2&#xff09;更新rust.sh脚本内容、修改源 # 编辑rust.sh vi rust.sh # 将RUSTUP_UPDATE_ROOT的值替换为&#xff1a; RUSTUP_UPDATE_ROOT&q…...

数据清洗与预处理:打造高质量数据分析基础

随着数据的快速增长,数据分析已经成为企业和组织的核心业务。然而,原始数据往往包含各种杂质和异常,这就需要我们进行数据清洗和预处理,以确保分析结果的准确性和可靠性。 1. 数据清洗的重要性: 数据清洗是指对原始数据进行检查、修正和完善,以消除错误、不一致性和噪声…...

Linux服务器(Debian系)包含UOS安全相关巡检shell脚本

#!/bin/bash# Define output file current_date$(date "%Y%m%d") # Gets the current date in YYYYMMDD format output_file"server_security_inspection_report_${current_date}.txt"# Empty the file initially echo > $output_file# 获取巡检时间 (…...

BS4网络提取selenium.chrome.WebDriver类的方法及属性

BS4网络提取selenium.chrome.WebDriver类的方法及属性 chrome.webdriver: selenium.webdriver.chrome.webdriver — Selenium 4.18.1 documentation class selenium.webdriver.chrome.webdriver.WebDriver 是 Selenium 中用于操作 Chrome 浏览器的 WebDriver 类。WebDriver 类…...

Prompt Engineering(提示工程)

Prompt 工程简介 在近年来&#xff0c;大模型&#xff08;Large Model&#xff09;如GPT、BERT等在自然语言处理领域取得了巨大的成功。这些模型通过海量数据的训练&#xff0c;具备了强大的语言理解和生成能力。然而&#xff0c;要想充分发挥这些大模型的潜力&#xff0c;仅仅…...

移远通信亮相AWE 2024,以科技力量推动智能家居产业加速发展

科技的飞速发展&#xff0c;为我们的生活带来了诸多便利&#xff0c;从传统的家电产品到智能化的家居设备&#xff0c;我们的居家生活正朝着更智能、更便捷的方向变革。 3月14日&#xff0c;中国家电及消费电子博览会&#xff08;Appliance&electronics World Expo&#xf…...

Java中上传数据的安全性探讨与实践

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一. 文件上传的风险 二. 使用合适的框架和库 1. Spr…...

Leetcode 17. 电话号码的字母组合

心路历程&#xff1a; 之前看过这道题的解法但是忘了。一开始想多重循环遍历&#xff0c;发现不知道写几个for循环&#xff0c;于是想到递归&#xff1b;发现递归需要记录选择的路径而不是返回节点值&#xff0c;想到了回溯。 回溯的解题模板&#xff1a;维护两个变量&#xf…...

蓝桥杯单片机快速开发笔记——独立键盘

一、原理分析 二、思维导图 三、示例框架 #include "reg52.h" sbit S7 P3^0; sbit S6 P3^1; sbit S5 P3^2; sbit S4 P3^3; void ScanKeys(){if(S7 0){Delay(500);if(S7 0){while(S7 0);}}if(S6 0){Delay(500);if(S6 0){while(S6 0)…...

Swift 面试题及答案整理,最新面试题

Swift 中如何实现单例模式&#xff1f; 在Swift中&#xff0c;单例模式的实现通常采用静态属性和私有初始化方法来确保一个类仅有一个实例。具体做法是&#xff1a;定义一个静态属性来存储这个单例实例&#xff0c;然后将类的初始化方法设为私有&#xff0c;以阻止外部通过构造…...

微信小程序上传图片c# asp.net mvc端接收案例

在微信小程序上传图片到服务器&#xff0c;并在ASP.NET MVC后端接收这个图片&#xff0c;可以通过以下步骤实现&#xff1a; 1. 微信小程序端 首先&#xff0c;在微信小程序前端&#xff0c;使用 wx.chooseImage API 选择图片&#xff0c;然后使用 wx.uploadFile API 将图片上…...

57、服务攻防——应用协议RsyncSSHRDP漏洞批扫口令猜解

文章目录 口令猜解——Hydra-FTP&RDP&SSH配置不当——未授权访问—Rsync文件备份协议漏洞——应用软件-FTP&Proftpd搭建 口令猜解——Hydra-FTP&RDP&SSH FTP&#xff1a;文本传输协议&#xff0c;端口21&#xff1b;RDP&#xff1a;windows上远程终端协议…...

java:Druid工具类解析sql获取表名

java&#xff1a;Druid工具类解析sql获取表名 1 前言 alibaba的druid连接池除了sql执行的功能外&#xff0c;还有sql语法解析的工具提供&#xff0c;参考依赖如下&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>druid</ar…...

MySQL--深入理解MVCC机制原理

什么是MVCC&#xff1f; MVCC全称 Multi-Version Concurrency Control&#xff0c;即多版本并发控制&#xff0c;维持一个数据的多个版本&#xff0c;主要是为了提升数据库的并发访问性能&#xff0c;用更高性能的方式去处理数据库读写冲突问题&#xff0c;实现无锁并发。 什…...

数据挖掘简介与应用领域概述

数据挖掘&#xff0c;作为信息技术领域中的重要分支之一&#xff0c;旨在从大量数据中发现潜在的模式、关联和趋势&#xff0c;以提取有用的信息和知识。在信息爆炸时代&#xff0c;大量数据的积累成为了常态&#xff0c;数据挖掘技术的出现填补了人们处理这些数据的空白&#…...

瑞熙贝通打造智慧校园实验室安全综合管理平台

一、建设思路 瑞熙贝通实验室安全综合管理平台是基于以实验室安全&#xff0c;用现代化管理思想与人工智能、大数据、互联网技术、物联网技术、云计算技术、人体感应技术、语音技术、生物识别技术、手机APP、自动化仪器分析技术有机结合&#xff0c;通过建立以实验室为中心的管…...

openstack调整虚拟机CPU 内存 磁盘 --来自gpt

在OpenStack中调整虚拟机&#xff08;即实例&#xff09;的CPU、内存&#xff08;RAM&#xff09;和磁盘大小通常涉及到以下几个步骤&#xff1a;首先&#xff0c;确定你要修改的实例名称或ID&#xff1b;其次&#xff0c;根据需要调整的资源类型&#xff0c;使用相应的命令进行…...

【IC设计】Verilog线性序列机点灯案例(三)(小梅哥课程)

声明&#xff1a;案例和代码来自小梅哥课程&#xff0c;本人仅对知识点做做笔记&#xff0c;如有学习需要请支持官方正版。 文章目录 该系列目录设计目标设计思路RTL及Testbench代码RTL代码Testbench代码 仿真结果上板视频 该系列目录 Verilog线性序列机点灯案例(一)&#xff…...

【打工日常】使用Docker部署团队协作文档工具

一、ShowDoc介绍 ​ShowDoc是一个适合IT团队共同协作API文档、技术文档的工具。通过showdoc&#xff0c;可以方便地使用markdown语法来书写出API文档、数据字典文档、技术文档、在线excel文档等等。 响应式网页设计&#xff1a;可将项目文档分享到电脑或移动设备查看。同时也可…...

(一)Neo4j下载安装以及初次使用

&#xff08;一&#xff09;下载 官网地址&#xff1a;Neo4j Graph Database & AnamConnect data as its stored with Neo4j. Perform powerful, complex queries at scale and speed with our graph data platform.https://neo4j.com/ &#xff08;二&#xff09;安装并配…...

QT for Mcu的学习建议

QT for MCU&#xff08;微控制器单元&#xff09;是一个相对较新的领域&#xff0c;它允许在资源受限的微控制器上运行Qt框架&#xff0c;从而为嵌入式设备带来丰富的用户界面和跨平台的开发体验。以下是一些建议&#xff0c;可以帮助你开始学习Qt for MCU&#xff1a; 理解Qt…...

【C语言初阶(五)】数组

❣博主主页: 33的博客❣ ▶文章专栏分类: C语言从入门到精通◀ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; 目录 1. 前言2.一维数组的概念3.一维数组的创建和初始化3.1数组的创建3.2数组的初始化3.3数组的类型 4.一维数组的使用4.1数组下标4.2数组元素打印4.4数组元…...