【深度学习模型移植】用torch普通算子组合替代torch.einsum方法
首先不得不佩服大模型的强大之处,在算法移植过程中遇到einsum算子在ONNX中不支持,因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法,但是该方法会导致训练时还是推理都很慢,并且会消耗大量显存,造成显存溢出的问题。。因此采用提问文心一言,没想到居然真的回答正确了。当然替换需要验证,不是全对的。
1.einsum(delta, A, ‘b l d_in, d_in n -> b l d_in n’) 的替换,以下两个方法均可以
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
deltaA = torch.exp(delta.unsqueeze(dim=3)*A.unsqueeze(dim=0).unsqueeze(dim=0))
deltaA = torch.exp(delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1) * A)
2.einsum(x, C[:, i, :], ‘b d_in n, b n -> b d_in’),以下两个方法均可以
y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')y = (x*C[:, i, :].unsqueeze(dim=1)).sum(dim=2)y = torch.matmul(C[:, i, :], x.transpose(-1, -2)).squeeze(1)
3.einsum(delta, B, u, ‘b l d_in, b l n, b l d_in -> b l d_in n’),以下两个方法均可以
deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
deltaB_u1 = delta.unsqueeze(dim=3)*B.unsqueeze(dim=2)*u.unsqueeze(dim=3)
下述方法是提问文心一言的办法,注意需要将答案的结果和einsum的结果进行对比,采用np.testing.assert_allclose(deltaB_u.numpy(),deltaB_u1.numpy(),rtol=1e-05,atol=1e-05)和print(deltaA.equal(deltaA_manual))均可以。
import torch
import numpy as np
from einops import rearrange, repeat, einsum
# 给定的张量
delta = torch.ones([1, 3, 2])
A = torch.ones([2, 4])
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
deltaA1 = torch.exp(delta.unsqueeze(dim=3)*A.unsqueeze(dim=0).unsqueeze(dim=0))
deltaA_manual = torch.exp(delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1) * A)
np.testing.assert_allclose(deltaA.numpy(),deltaA1.numpy(),rtol=1e-05,atol=1e-05)# 扩展 delta 的维度,以便它可以与 A 进行广播(broadcast)
# 这里我们使用 unsqueeze 和 repeat_interleave 来扩展维度
delta_expanded = delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1)
# 执行逐元素的乘法,然后取指数
deltaA_manual = torch.exp(delta_expanded * A)# 注意:deltaA_manual 的形状是 [1, 3, 2, 4],这与 einsum 的输出形状一致
print(deltaA.equal(deltaA_manual))
print(deltaA1.equal(deltaA_manual))



相关文章:
【深度学习模型移植】用torch普通算子组合替代torch.einsum方法
首先不得不佩服大模型的强大之处,在算法移植过程中遇到einsum算子在ONNX中不支持,因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法,但是该方法会…...
鸿蒙 Harmony 初体验
前言 看现在网上传得沸沸扬扬的鸿蒙,打算弄个 hello world 玩一下, 不然就跟不上时代的发展了 环境安装 我的环境 Windows 11 家庭中文版HarmonyOS SDK (API 9)DevEco Studio (3.1.1 Release)Node.js (16.19.1) 开发IDE下载 官方下载链接 配置 nodejs 这里帮…...
Jmeter+ant,ant安装与配置
1.ant含义 ant:Ant翻译过来是蚂蚁的意思,在我们做接口测试的时候,是可以用来做JMeter接口测试生成测试报告的工具 2.ant下载 下载地址:Apache Ant - Ant Manual Distributions download中选择ant 下载安装最新版zip文件 3.…...
【MySQL基础】MySQL基础操作三
文章目录 🍉1.联合查询🥝笛卡尔积 🍉2.内连接🥝查询单个数据🥝查询多个数据 🍉3.外连接🍉4.自连接🍉5.合并查询 🍉1.联合查询 🥝笛卡尔积 实际开发中往往数…...
【K8s】肿么办??Kubernetes Secrets并不是Secret哟!!
【K8s】肿么办??Kubernetes Secrets并不是Secret哟!! 目录 【K8s】肿么办??Kubernetes Secrets并不是Secret哟!!Kubernetes Secrets为什么不认为 Base64 编码是密文?问题出现了以下是几种加密 K8s Secrets 的选项。Bitnami Sealed Secrets 介绍Bitnami Sealed Secrets…...
数星星 刷题笔记 (树状数组)
依题意 要求每个点 x, y 的左下方有多少个星星 又因为 是按照y从小到大 给出的 所以 我们在计算个数的时候是按照y一层层变大来遍历的 因此我们在处理每一个点的时候 只需要看一下 当前的点有多少个点的x值比当前点小即可 树状数组的 操作模板 P3374 【模板】树…...
Windows→Linux,本地同步到服务器
适用背景: 用自己电脑修改代码,使用实验室/公司的服务器炼丹的朋友 优势: 本地 <--> 服务器,实时同步,省去文件传输的步骤 本地改 -> 自动同步到服务器 -> 服务器跑代码 -> 一键同步回本地ÿ…...
Pycharm连接远程服务器Anoconda中的虚拟环境
在配置远程解释器时,踩过一些坑,现在记录一下配置过程: 步骤1: 打开pycharm的File里面的Settings 里面的Project:你的项目名称目录下的Python Interpreter。 步骤二: 点击右上角的“add interpreter”,选择…...
无人机自动返航算法实现与优化
一、引言 随着无人机技术的快速发展,其在航拍、农业、救援等领域的应用越来越广泛。在这些应用中,无人机的自动返航功能显得尤为重要。一旦无人机失去控制或与遥控器失去连接,自动返航算法能够确保无人机安全返回起飞点,避免损失和…...
切面条-蓝桥杯?-Lua 中文代码解题第1题
切面条-蓝桥杯?-Lua 中文代码解题第1题 一根高筋拉面,中间切一刀,可以得到2根面条。 如果先对折1次,中间切一刀,可以得到3根面条。 如果连续对折2次,中间切一刀,可以得到5根面条。 那么…...
WebRTC:真正了解 RTP 和 RTCP
介绍 近年来,通过互联网进行实时通信变得越来越流行,而 WebRTC 已成为通过网络实现实时通信的领先技术之一。WebRTC 使用多种协议,包括实时传输协议 (RTP) 和实时控制协议 (RTCP)。 RTP负责通过网络传输音频和视频数据,而RTCP负责…...
vue实现双向绑定原理深度解析
1. vue双向绑定应用场景 Vue的双向绑定机制主要体现在以下几个方面: 表单输入:在表单输入中,Vue的双向绑定机制非常有用。通过v-model指令,可以将表单元素的值与Vue实例中的数据进行双向绑定,当用户在表单输入框中输入内容时,数据会自动更新,反之,当数据发生变化时,输…...
C语言 —— memeove函数的模拟实现
函数作用:从sourse的位置开始向后复制num个字节到desttintion指向的内存位置,(运用于字符时,遇到\0不会停止),这个函数支持重叠部分的复制,是memcpy函数的改进版本 具体步骤: 1&am…...
<el-tab>样式自定义——一个可以触类旁通的小例子
首先在网页的检查确定想要自定义的部分叫什么 例如: 我想修改的组件是el-tabs__header.is-top 的margin-bottom 则在相应vue文件的<style>里面增加这一属性 其中,::v-deep可以帮助覆盖子组件内部元素的样式。 ::v-deep .el-tabs__header.is-to…...
XDP学习笔记
XDP的使用与eBPF程序分不开,因此要了解学历XDP,须知道什么是eBPF、什么是XDP。 概念 eBPF BPF(Berkeley Packet Filter)是一种灵活且高效的数据包过滤技术,最初由 BSD Unix 中的网络子系统引入;BPF 允许用…...
JavaScript进阶:js的一些学习笔记-4
文章目录 1. 拷贝1. 浅拷贝2. 深拷贝 2. 异常处理 1. 拷贝 这里指的拷贝是指拷贝引用类型的数据(对象) 1. 浅拷贝 拷贝对象:Object.assign() 或者 {…obj} 展开运算符 const obj {name:liuze,age:23 } const o {...obj}; o.age 22; console.log(o); console.…...
【可能是全网最丝滑的LangChain教程】三、快速入门LLMChain
系列文章地址 【可能是全网最丝滑的LangChain教程】一、LangChain介绍 【可能是全网最丝滑的LangChain教程】二、LangChain安装 使用LangChain构建应用 LangChain支持构建应用程序,将外部数据源和计算源连接到LLM。我们将从一个简单的 LLM 链开始,它…...
Oracle Primavera Analytics 是什么,与P6的关系?
前言 Oracle Primavera P6 Analytics 是与P6有关的一个相对较新的模块,Primavera 用户社区在很大程度上尚未对其进行探索。 那么它到底有什么作用呢? 通过了解得知它旨在通过深入了解组织的项目组合绩效,帮助高级管理层对其项目组合做出更好…...
在 Amazon Bedrock 上使用 Anthropic Claude 系统 Prompt
系统 prompt 是定义生成式 AI 模型对用户输入的响应策略的一种好方法。这篇博文将介绍什么是系统 prompt,以及如何在基于 Anthropic Claude 2.x 和 3 的应用中使用系统 prompt。 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例…...
【LeetCode】动态规划--题目练习
有关动态规划算法的整理:添加链接描述 1.爬楼梯 爬楼梯:LeetCode70 int climbStairs(int n) {//1.确定dp数组和意义 dp[n]表示第n阶的方法//2.确定递推关系式 dp[n] dp[n-1]dp[n-2];//3.初始化int dp[50] {0};dp[1] 1;dp[2] 2;for(int i 3;i<n;i){dp[i] …...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
