当前位置: 首页 > news >正文

外贸入门,很残忍但很真实的外贸真相

如果你是小白入行外贸,第一家选择的公司大概率会决定你以后的客户开发模式。
外贸老鸟们可以留言讨论下自己是不是被说中了。


如果新人选择的第一家公司是靠B2B网站,展会或者官网询盘分发,公司每年会花大量的广告费用获客,你会很快熟悉外贸流程且成交。


但劣势是当你养成了被动获取询盘,每天等分配就有订单的习惯后,就不会愿意主动花很多时间精力去做自主开发了。


在公司工作不用太担心,但如果你想自己出来Soho,离开公司给的资源,你就知道这条路有多难走。就像我去年刚出来那会儿,只有也只懂阿里获客,一年到头其实是在为平台贴钱打工。


如果你选择的第一家公司是以主动开发客户为主,例如,谷歌,社媒,海关数据,地推等。可能前三个月或者半年都没有什么订单 ,也有很多人耐不住寂寞就走了。


但真正靠纯自主开发成交客户的外贸人,沉淀了自己获客的能力,后面出来自己干的投入和压力会小很多。


残忍的是,90%的人面对纯自主开发的公司都会知难而退。这也是为什么包括我自己在内做平台的外贸人越来越难做,而会自主开发的人会越过越滋润。


但是好在,我们都年轻,只要下定决心,学习新技能并不是什么难事,我自己也在不断学习。希望我们都能有从头再来的勇气和一往无前的魄力。

更多外贸资讯请关注公众号Erica外贸分享


往期推荐:

外贸干货|小白必须知道的六大开发信模板!

外贸入门,很残忍但很真实的外贸真相

说话情商高的外贸人有多恐怖!

外贸业务员的工作时间安排,抓紧收藏!

相关文章:

外贸入门,很残忍但很真实的外贸真相

如果你是小白入行外贸,第一家选择的公司大概率会决定你以后的客户开发模式。 外贸老鸟们可以留言讨论下自己是不是被说中了。 如果新人选择的第一家公司是靠B2B网站,展会或者官网询盘分发,公司每年会花大量的广告费用获客,你会很快…...

【Linux网络编程七】网络序列化和反序列化(网络版本计算器)

【Linux网络编程七】网络序列化和反序列化(网络版本计算器) 一.网络读取问题【解决方案】1.定制协议2.序列化和反序列化3.添加报头①封包②解包 4.框架总结 二.自定义协议:网络计算器协议Ⅰ.客户端发送请求,服务器端接收请求1.构建请求(结构化…...

算法打卡day17|二叉树篇06|Leetcode 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

算法题 Leetcode 654.最大二叉树 题目链接:654.最大二叉树 大佬视频讲解:最大二叉树视频讲解 个人思路 大概思路就是在数组中 找最大值的节点作为当前节点,用最大值的index切割左右子树的区间,往复循环到数组元素为0; 解法 递…...

C语言之数据在计算机内部的存储

文章目录 一、前言二、类型的基本归类1、整型家族2、浮点数家族3、构造类型4、指针类型 三、整型在内存中的存储1、原码、反码、补码1.1 概念1.2 原码与补码的转换形式1.3 计算机内部的存储编码 2、大小端介绍~~2.1 为什么要有大端和小端之分?2.2 大(小&…...

程序人生——Java中基本类型使用建议

目录 引出Java中基本类型使用建议建议21:用偶判断,不用奇判断建议22:用整数类型处理货币建议23:不要让类型默默转换建议24:边界、边界、还是边界建议25:不要让四舍五入亏了一方 建议26:提防包装…...

Pikachu 靶场搭建

文章目录 环境说明1 Pikachu 简介2 Pikachu 安装 环境说明 操作系统:Windows 10PHPStudy 版本: 8.1.1.3Apache 版本:2.4.39MySQL 版本 5.7.26 1 Pikachu 简介 Pikachu是一个使用“PHP MySQL” 开发、包含常见的Web安全漏洞、适合Web渗透测试学习人员练…...

机器学习-绪论

机器学习致力于研究如何通过计算的手段、利用经验来改善系统自身的性能。在计算机系统中,“经验”通常以“数据”的形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法…...

mysql 索引(为什么选择B+ Tree?)

索引实现原理 索引:排好序的数据结构 优点:降低I/O成本,CPU的资源消耗(数据持久化在磁盘中,每次查询都得与磁盘交互) 缺点:更新表效率变慢,(更新表数据,还要…...

蓝桥杯-带分数

法一 /* 再每一个a里去找c,他们共用一个st数组,可以解决重复出现数字 通过ac确定b,b不能出现<0 b出现的数不能和ac重复*/import java.util.Scanner;public class Main {static int n,res;static boolean[] st new boolean[15];static boolean[] backup new boolean[15];…...

消息队列面试题

目录 1. 为什么使用消息队列 2. 消息队列的缺点 3. 消息队列如何选型&#xff1f; 4. 如何保证消息队列是高可用的 5. 如何保证消息不被重复消费&#xff08;见第二条&#xff09; 6. 如何保证消息的可靠性传输&#xff1f; 7. 如何保证消息的顺序性&#xff08;即消息幂…...

Android和IOS应用开发-Flutter 应用中实现记录和使用全局状态的几种方法

文章目录 在Flutter中记录和使用全局状态使用 Provider步骤1步骤2步骤3 使用 BLoC步骤1步骤2步骤3 使用 GetX&#xff1a;步骤1步骤2步骤3 在Flutter中记录和使用全局状态 在 Flutter 应用中&#xff0c;您可以使用以下几种方法来实现记录和使用全局状态&#xff0c;并在整个应…...

若依 ruoyi-cloud [网关异常处理]请求路径:/system/user/getInfo,异常信息:404

这里遇到的情况是因为nacos中的配置文件与项目启动时的编码不一样&#xff0c;若配置文件中有中文注释&#xff0c;那么用idea启动项目的时候&#xff0c;在参数中加上 -Dfile.encodingutf-8 &#xff0c;保持编码一致&#xff0c;&#xff08;用中文注释的配置文件&#xff0c…...

自然语言处理里预训练模型——BERT

BERT&#xff0c;全称Bidirectional Encoder Representation from Transformers&#xff0c;是google在2018年提出的一个预训练语言模型&#xff0c;它的推出&#xff0c;一举刷新了当年多项NLP任务值的新高。前期我在零、自然语言处理开篇-CSDN博客 的符号向量化一文中简单介绍…...

2024年信息技术与计算机工程国际学术会议(ICITCEI 2024)

2024年信息技术与计算机工程国际学术会议&#xff08;ICITCEI 2024&#xff09; 2024 International Conference on Information Technology and Computer Engineering ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 大会主题&#xff1a; 信息系统和技术…...

渗透测试修复笔记 - 02 Docker Remote API漏洞

需要保持 Docker 服务运行并且不希望影响其他使用 Docker 部署的服务&#xff0c;同时需要禁止外网访问特定的 Docker API 端口&#xff08;2375&#xff09;&#xff1a;通过一下命令来看漏洞 docker -H tcp://ip地址:2375 images修改Docker配置以限制访问 修改daemon.json配…...

Spring(创建对象的方式3个)

3、Spring IOC创建对象方式一&#xff1a; 01、使用无参构造方法 //id&#xff1a;唯一标识 class&#xff1a;当前创建的对象的全局限定名 <bean id"us1" class"com.msb.pojo.User"/> 02、使用有参构造 <bean id"us2&…...

【GPT-SOVITS-02】GPT模块解析

说明&#xff1a;该系列文章从本人知乎账号迁入&#xff0c;主要原因是知乎图片附件过于模糊。 知乎专栏地址&#xff1a; 语音生成专栏 系列文章地址&#xff1a; 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

6个选品建议,改善你的亚马逊现状。

一、市场热点与需求调研 深入研究当前市场趋势&#xff0c;了解消费者需求的变化。使用亚马逊的销售数据、评价、问答等功能&#xff0c;以及第三方市场研究工具&#xff0c;比如店雷达&#xff0c;分析潜在热销产品的特点。注意季节性需求&#xff0c;提前布局相关选品&#…...

SQL中的SYSDATE函数

前言 在SQL语言中&#xff0c;SYSDATE 是一个非常实用且常见的系统内置函数&#xff0c;尤其在Oracle和MySQL数据库中广泛使用。它主要用来获取服务器当前的日期和时间&#xff0c;这对于进行实时数据记录、审计跟踪、有效期计算等场景特别有用。本文将详细解析SYSDATE函数的使…...

Rust的async和await支持多线程运行吗?

Rust的async和await的异步机制并不是仅在单线程下实现的&#xff0c;它们可以在多线程环境中工作&#xff0c;从而利用多核CPU的并行计算优势。然而&#xff0c;异步编程的主要目标之一是避免不必要的线程切换开销&#xff0c;因此&#xff0c;在单线程上下文中&#xff0c;asy…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...