当前位置: 首页 > news >正文

机器学习-绪论

        机器学习致力于研究如何通过计算的手段、利用经验来改善系统自身的性能。在计算机系统中,“经验”通常以“数据”的形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”。

1 基本术语

数据集:下面记录的集合称为一个“数据集”

示例或样本:每条记录是关于一个事件或对象的描述。

属性:反映事件或对象在某方面的表现或性质的事项,例如“色泽”“敲声”等

属性值:属性上的取值,例如“青绿”“乌黑'

属性空间或样本空间:属性张成的空间

特征向量因为每一个样本都可以表示为特征空间中的一点,即为一个坐标向量。所以我们也把一个样本称为一个特征向量

样例:拥有了标记信息的示例

监督学习:分类、回归

无监督学习:聚类

泛化能力:学得模型适用于新样本的能力。

2 假设空间

        归纳学习:有狭义与广义之分,广义的归纳学习大体相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念(concept),因此亦称为“概念学习”或“概念形成”.概念学习技术目前研究、应用都比较少,因为要学得泛化性能好且语义明确的概念实在太困难了,现实常用的技术大多是产生“黑箱”模型.然而,对概念学习有所了解,有助于理解机器学习的一些基础思想.

布尔概念学习:即对“是”、“不是”进行学习。

3 归纳偏好

        机器学习算法在学习过程中对某种类型假设的偏好,称为“归纳偏好”

        对于任意两个学习算法,无论哪个算法更加”聪明“或者更加”笨拙",它们的期望性能竟然相同。这就是”没有免费的午餐“定理(No Free Lunch Theorem,简称NFL定理)

        前提:所有的问题出现的机会相同,所有问题同等重要。但是实际情况并不是这样。很多时候我们只关心自己试图解决的问题,希望为他找到一个解决方案,至于这个解决方案在别的问题,甚至相似问题是是否为好方案,我们并不关心。

        NFL定理最重要的寓意,是让我们清楚的认识到,脱离实际问题,空谈“什么学习算法更好”毫无意义,因为若考虑潜在的问题,则所有的学习算法一样好,要谈算法的相对优劣,必须针对具体的学习问题。

相关文章:

机器学习-绪论

机器学习致力于研究如何通过计算的手段、利用经验来改善系统自身的性能。在计算机系统中,“经验”通常以“数据”的形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法…...

mysql 索引(为什么选择B+ Tree?)

索引实现原理 索引:排好序的数据结构 优点:降低I/O成本,CPU的资源消耗(数据持久化在磁盘中,每次查询都得与磁盘交互) 缺点:更新表效率变慢,(更新表数据,还要…...

蓝桥杯-带分数

法一 /* 再每一个a里去找c,他们共用一个st数组,可以解决重复出现数字 通过ac确定b,b不能出现<0 b出现的数不能和ac重复*/import java.util.Scanner;public class Main {static int n,res;static boolean[] st new boolean[15];static boolean[] backup new boolean[15];…...

消息队列面试题

目录 1. 为什么使用消息队列 2. 消息队列的缺点 3. 消息队列如何选型&#xff1f; 4. 如何保证消息队列是高可用的 5. 如何保证消息不被重复消费&#xff08;见第二条&#xff09; 6. 如何保证消息的可靠性传输&#xff1f; 7. 如何保证消息的顺序性&#xff08;即消息幂…...

Android和IOS应用开发-Flutter 应用中实现记录和使用全局状态的几种方法

文章目录 在Flutter中记录和使用全局状态使用 Provider步骤1步骤2步骤3 使用 BLoC步骤1步骤2步骤3 使用 GetX&#xff1a;步骤1步骤2步骤3 在Flutter中记录和使用全局状态 在 Flutter 应用中&#xff0c;您可以使用以下几种方法来实现记录和使用全局状态&#xff0c;并在整个应…...

若依 ruoyi-cloud [网关异常处理]请求路径:/system/user/getInfo,异常信息:404

这里遇到的情况是因为nacos中的配置文件与项目启动时的编码不一样&#xff0c;若配置文件中有中文注释&#xff0c;那么用idea启动项目的时候&#xff0c;在参数中加上 -Dfile.encodingutf-8 &#xff0c;保持编码一致&#xff0c;&#xff08;用中文注释的配置文件&#xff0c…...

自然语言处理里预训练模型——BERT

BERT&#xff0c;全称Bidirectional Encoder Representation from Transformers&#xff0c;是google在2018年提出的一个预训练语言模型&#xff0c;它的推出&#xff0c;一举刷新了当年多项NLP任务值的新高。前期我在零、自然语言处理开篇-CSDN博客 的符号向量化一文中简单介绍…...

2024年信息技术与计算机工程国际学术会议(ICITCEI 2024)

2024年信息技术与计算机工程国际学术会议&#xff08;ICITCEI 2024&#xff09; 2024 International Conference on Information Technology and Computer Engineering ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 大会主题&#xff1a; 信息系统和技术…...

渗透测试修复笔记 - 02 Docker Remote API漏洞

需要保持 Docker 服务运行并且不希望影响其他使用 Docker 部署的服务&#xff0c;同时需要禁止外网访问特定的 Docker API 端口&#xff08;2375&#xff09;&#xff1a;通过一下命令来看漏洞 docker -H tcp://ip地址:2375 images修改Docker配置以限制访问 修改daemon.json配…...

Spring(创建对象的方式3个)

3、Spring IOC创建对象方式一&#xff1a; 01、使用无参构造方法 //id&#xff1a;唯一标识 class&#xff1a;当前创建的对象的全局限定名 <bean id"us1" class"com.msb.pojo.User"/> 02、使用有参构造 <bean id"us2&…...

【GPT-SOVITS-02】GPT模块解析

说明&#xff1a;该系列文章从本人知乎账号迁入&#xff0c;主要原因是知乎图片附件过于模糊。 知乎专栏地址&#xff1a; 语音生成专栏 系列文章地址&#xff1a; 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

6个选品建议,改善你的亚马逊现状。

一、市场热点与需求调研 深入研究当前市场趋势&#xff0c;了解消费者需求的变化。使用亚马逊的销售数据、评价、问答等功能&#xff0c;以及第三方市场研究工具&#xff0c;比如店雷达&#xff0c;分析潜在热销产品的特点。注意季节性需求&#xff0c;提前布局相关选品&#…...

SQL中的SYSDATE函数

前言 在SQL语言中&#xff0c;SYSDATE 是一个非常实用且常见的系统内置函数&#xff0c;尤其在Oracle和MySQL数据库中广泛使用。它主要用来获取服务器当前的日期和时间&#xff0c;这对于进行实时数据记录、审计跟踪、有效期计算等场景特别有用。本文将详细解析SYSDATE函数的使…...

Rust的async和await支持多线程运行吗?

Rust的async和await的异步机制并不是仅在单线程下实现的&#xff0c;它们可以在多线程环境中工作&#xff0c;从而利用多核CPU的并行计算优势。然而&#xff0c;异步编程的主要目标之一是避免不必要的线程切换开销&#xff0c;因此&#xff0c;在单线程上下文中&#xff0c;asy…...

P2676 [USACO07DEC] Bookshelf B

[USACO07DEC] Bookshelf B 题目描述 Farmer John 最近为奶牛们的图书馆添置了一个巨大的书架&#xff0c;尽管它是如此的大&#xff0c;但它还是几乎瞬间就被各种各样的书塞满了。现在&#xff0c;只有书架的顶上还留有一点空间。 所有 N ( 1 ≤ N ≤ 20 , 000 ) N(1 \le N…...

【数学】第十三届蓝桥杯省赛C++ A组/研究生组《爬树的甲壳虫》(C++)

【题目描述】 有一只甲壳虫想要爬上一棵高度为 n 的树&#xff0c;它一开始位于树根&#xff0c;高度为 0&#xff0c;当它尝试从高度 i−1 爬到高度为 i 的位置时有 Pi 的概率会掉回树根&#xff0c;求它从树根爬到树顶时&#xff0c;经过的时间的期望值是多少。 【输入格式…...

Java毕业设计 基于springboot vue招聘网站 招聘系统

Java毕业设计 基于springboot vue招聘网站 招聘系统 springboot vue招聘网站 招聘系统 功能介绍 用户&#xff1a;登录 个人信息 简历信息 查看招聘信息 企业&#xff1a;登录 企业信息管理 发布招聘信息 职位招聘信息管理 简历信息管理 管理员&#xff1a;注册 登录 管理员…...

Leetcode 1. 两数之和

心路历程&#xff1a; 很简单的题&#xff0c;双层暴力就可以&#xff0c;用双指针的话快一点。暴力时间复杂度O( n 2 n^2 n2)&#xff0c;双指针时间复杂度O(nlogn) O(n) O(n) O(nlogn)。 注意的点&#xff1a; 1、题目需要返回原数组的索引&#xff0c;所以排序后还需要…...

【elasticsearch实战】从零开始设计全站搜索引擎

业务需求 最近需要一个全站搜索的功能&#xff0c;我们的站点的特点是数据多源&#xff0c;即有我们本地数据库&#xff0c;也包含了第三方数据源&#xff0c;我们的数据类型除了网页&#xff0c;还包括了各种类型的文档&#xff0c;例如&#xff1a;doc、pdf、excel、ppt等格…...

基于tcp协议的网络通信(基础echo版.多进程版,多线程版,线程池版),telnet命令

目录 基础版 思路 辅助函数 服务端 代码 运行情况 -- telnet ip 端口号 传输的数据为什么没有转换格式 客户端 思路 代码 多进程版 引入 问题 解决 注意点 服务端 代码 运行情况 进程池版(简单介绍) 多线程版 引入 问题解决 注意点 服务端 代码 …...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...