当前位置: 首页 > news >正文

SSA优化最近邻分类预测(matlab代码)

SSA-最近邻分类预测matlab代码

麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。

数据为Excel分类数据集数据。

数据集划分为训练集、验证集、测试集,比例为8:1:1

模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。

数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。

模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混淆矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。

结果可视化: 通过绘制通过绘制SSA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。

输出定量结果如下:

十折验证准确率:0.94309

训练集ACU:0.95122

验证集ACU:1

测试集ACU:1

运行时长: 0.268

代码有中文介绍。

代码能正常运行时不负责答疑!

代码运行结果如下:

部分代码如下:
% 清除命令窗口、工作区数据、图形窗口、警告
clc;
clear;
close all;
warning off;
load('data.mat')		
data1=readtable('分类数据集.xlsx'); %读取数据 	 	
data=table2array(data1(:,2:end));	
A_data1=data;	
data_select=A_data1;	
%% 数据划分	
x_feature_label=data_select(:,1:end-1);    %x特征	
y_feature_label=data_select(:,end);          %y标签	
index_label1=randperm(size(x_feature_label,1));	
index_label=G_out_data.spilt_label_data;  % 数据索引	
if isempty(index_label)	index_label=index_label1;	
end	
spilt_ri=G_out_data.spilt_rio;  %划分比例 训练集:验证集:测试集	
train_num=round(spilt_ri(1)/(sum(spilt_ri))*size(x_feature_label,1));          %训练集个数	
vaild_num=round((spilt_ri(1)+spilt_ri(2))/(sum(spilt_ri))*size(x_feature_label,1)); %验证集个数	
%训练集,验证集,测试集	
train_x_feature_label=x_feature_label(index_label(1:train_num),:);	
train_y_feature_label=y_feature_label(index_label(1:train_num),:);	
vaild_x_feature_label=x_feature_label(index_label(train_num+1:vaild_num),:);	
vaild_y_feature_label=y_feature_label(index_label(train_num+1:vaild_num),:);	
test_x_feature_label=x_feature_label(index_label(vaild_num+1:end),:);	
test_y_feature_label=y_feature_label(index_label(vaild_num+1:end),:);	

相关文章:

SSA优化最近邻分类预测(matlab代码)

SSA-最近邻分类预测matlab代码 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。 数据为Excel分类数据集数据。 数据集划分为训练集、验证集、测试集,比例为8&#…...

nginx相关内容的安装

nginx的安装 安装依赖 yum install gcc gcc-c automake autoconf libtool make gd gd-devel libxslt-devel -y 安装lua与lua依赖 lua安装步骤如下: mkdir /www mkdir /www/server #选择你自己的目录即可,不需要跟我一致 cd /www/server tar -zxvf lua-5.4.3.tar.gz cd lua-5.4…...

基于SpringBoot和Echarts的全国地震可视化分析实战

目录 前言 一、后台数据服务设计 1、数据库查询 2、模型层对象设计 3、业务层和控制层设计 二、Echarts前端配置 1、地图的展示 2、次数排名统计 三、最终结果展示 1、地图展示 2、图表展示 总结 前言 在之前的博客中基于SpringBoot和PotsGIS的各省地震震发可视化分…...

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的农作物害虫检测系统(深度学习模型+UI界面+训练数据集)

摘要:开发农作物害虫检测系统对于提高农业生产效率和作物产量具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个农作物害虫检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5&#xff0…...

21 # 高级类型:条件类型

条件类型(Conditional Types)是一种高级的类型工具,它允许我们基于一个类型关系来选择另一个类型。条件类型通常使用条件表达式 T extends U ? X : Y 的形式,其中根据泛型类型 T 是否可以赋值给类型 U 来确定最终的类型是 X 还是…...

Java之List.steam().sorted(Comparator.comparing())排序异常解决方案

使用steam().sorted(Comparator.comparing())对List<T>集合里的String类型字段进行倒序排序&#xff0c;发现倒序失效。记录解决方案。 异常代码如下: customerVOList customerVOList.stream().sorted(Comparator.comparing(CustomerVOVO::getCustomerRate).reversed()…...

js判断对象是否有某个属性

前端判断后端接口是否返回某个字段的时候 <script>var obj { name: "John", age: 30 };console.log(obj.hasOwnProperty("name")); // 输出 trueconsole.log(obj.hasOwnProperty("email")); // 输出 falselet obj11 { name: "Joh…...

CleanMyMac X2024永久免费的强大的Mac清理工具

作为产品功能介绍专员&#xff0c;很高兴向您详细介绍CleanMyMac X这款强大的Mac清理工具。CleanMyMac X具有广泛的清理能力&#xff0c;支持多种文件类型的清理&#xff0c;让您的Mac始终保持最佳状态。 系统垃圾 CleanMyMac X能够深入系统内部&#xff0c;智能识别并清理各种…...

等保测评的知识

结合自己所学的知识和网络上的一些知识做个小总结。 目录 一、概念&#xff1a; 二、等级划分&#xff1a; 三、技术要求&#xff1a; 四、管理要求&#xff1a; 五、等保测评实施过程&#xff1a; 六、典型的网络架构&#xff1a; 一、概念&#xff1a; 全称为信息安全等级保…...

【算法】多路归并(鱼塘钓鱼)

有 N 个鱼塘排成一排&#xff0c;每个鱼塘中有一定数量的鱼&#xff0c;例如&#xff1a;N5 时&#xff0c;如下表&#xff1a; 鱼塘编号12345第1分钟能钓到的鱼的数量&#xff08;1..1000&#xff09;101420169每钓鱼1分钟钓鱼数的减少量&#xff08;1..100)24653当前鱼塘到下…...

unity3d Animal Controller的Animal组件中General基础部分理解

控制器介绍 动物脚本负责控制动物的所有运动逻辑.它管理所有的动画师和刚体参数,以及所有的状态和模式,动物可以做。 动物控制器 是一个动画框架控制器,根动或到位,为任何生物或人形。它利用刚体与物理世界的互动和动画师的玩动画。 States States 是不互相重叠的动画。例如…...

css背景从上到下颜色渐变、css背景从左到右颜色渐变、 css框线展示外阴影、css框线展示内阴影

1. css背景从上到下颜色渐变 body {background: linear-gradient(to bottom, #ff0000, #ffff00); /* 这里的#ff0000表示红色&#xff0c;#ffff00表示黄色 */ }2. css背景从左到右颜色渐变 要实现CSS背景从左到右的颜色渐变&#xff0c;可以使用linear-gradient函数。以下是一…...

Nacos学习笔记

Nacos官网 https://github.com/alibaba/nacos/releases https://www.bilibili.com/video/BV1q3411Z79z 1. Nacos介绍 Nacos是Dynamic Naming and Configuration Service的首字母简称&#xff0c;一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 在这个…...

微信小程序 nodejs+vue+uninapp学生在线选课作业管理系统

基于微信小程序的班级作业管理助手使用的是MySQL数据库&#xff0c;nodejs语言和IDEA以及微信开发者工具作为开发工具&#xff0c;这些技术和工具我在日常的作业中都经常的使用&#xff0c;并且因为对编程感兴趣&#xff0c;在闲暇时间也进行的进行编程的提高&#xff0c;所以在…...

trpc-go 博客系统

trpc-go 博客系统 使用go语言构建的全栈项目&#xff0c;充分利用了go的简洁性、高性能和并发处理能力。 系统采用了trpc-go框架和北极星进行分布式开发&#xff0c;展示了如何基于腾讯开源技术栈构建微服务架构&#xff0c;实现高效的服务通信和管理。 https://github.com/…...

【JAVA】Servlet开发

目录 HttpServlet HttpServletRequest HttpServletResponse 错误页面 设置网页自动刷新时间 构造重定向相应 js发起http请求 服务器端对js发起的http请求进行处理 前端获取后端数据&#xff0c;添加到当前页面的末尾&#xff0c;代码示例&#xff1a; 前后端交互&…...

k8s helm 删除 tiller

kuberneter 上面装了 helm 想卸载还并不是那么简单, 参考 stackoverflow 回复 kubectl get -n kube-system secrets,sa,clusterrolebinding -o name|grep tiller|xargs kubectl -n kube-system delete kubectl get all -n kube-system -l apphelm -o name|xargs kubectl dele…...

Python入门(小白友好)

知识图谱 搭建环境 安装Python:Download Python | Python.org 安装PyCharm:Download PyCharm: The Python IDE for data science and web development by JetBrains 注意:专业版本是收费的,新手小白使用社区版(community)即可 创建第一个项目: 一些PyCharm的设置(也适用…...

【数据结构与算法】:非递归实现快速排序、归并排序

&#x1f525;个人主页&#xff1a; Quitecoder &#x1f525;专栏&#xff1a;数据结构与算法 上篇文章我们详细讲解了递归版本的快速排序&#xff0c;本篇我们来探究非递归实现快速排序和归并排序 目录 1.非递归实现快速排序1.1 提取单趟排序1.2 用栈实现的具体思路1.3 代码…...

2024-3-18-C++day6作业

1>思维导图 2>试编程 要求: 封装一个动物的基类&#xff0c;类中有私有成员&#xff1a;姓名&#xff0c;颜色&#xff0c;指针成员年纪 再封装一个狗这样类&#xff0c;共有继承于动物类&#xff0c;自己拓展的私有成员有&#xff1a;指针成员&#xff1a;腿的个数&a…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

简单介绍C++中 string与wstring

在C中&#xff0c;string和wstring是两种用于处理不同字符编码的字符串类型&#xff0c;分别基于char和wchar_t字符类型。以下是它们的详细说明和对比&#xff1a; 1. 基础定义 string 类型&#xff1a;std::string 字符类型&#xff1a;char&#xff08;通常为8位&#xff09…...