当前位置: 首页 > news >正文

掌握Go语言:探索Go语言指针,解锁高效内存操作与动态数据结构的奥秘(19)

指针是一个变量,它存储了另一个变量的地址。在Go语言中,指针提供了直接访问内存地址的能力,允许程序直接操作内存,这在某些场景下非常有用。

Go语言指针的详细使用方法

声明指针

可以使用*符号来声明指针变量,例如:

var ptr *int // 声明一个整型指针
获取变量地址

使用&操作符可以获取变量的地址,例如:

var num int = 10
ptr := &num // 将num的地址赋给ptr
访问指针指向的值

使用*操作符可以获取指针指向的值,例如:

fmt.Println(*ptr) // 输出:10,即指针ptr所指向的变量num的值
修改指针指向的值

可以通过指针修改所指向变量的值,例如:

*ptr = 20
fmt.Println(num) // 输出:20,因为通过ptr修改了num的值

Go语言指针的使用示例

package mainimport "fmt"func main() {var num int = 10var ptr *int // 声明一个整型指针ptr = &num // 将num的地址赋给ptrfmt.Println("Value of num:", num)fmt.Println("Address of num:", ptr)fmt.Println("Value at address stored in ptr:", *ptr)*ptr = 20 // 修改ptr所指向的值fmt.Println("New value of num:", num)
}

以上代码演示了Go语言中指针的基本用法,包括声明指针、获取变量地址、访问指针指向的值以及修改指针指向的值等操作。

  1. var num int = 10:声明一个整型变量num并初始化为10。

  2. var ptr *int:声明一个整型指针ptr,但未初始化,此时ptr被赋值为nil。

  3. ptr = &num:将变量num的地址赋给指针ptr,使其指向变量num的内存地址。

  4. fmt.Println("Value of num:", num):输出变量num的值,即10

  5. fmt.Println("Address of num:", ptr):输出变量num的地址,即指针ptr的值。

  6. fmt.Println("Value at address stored in ptr:", *ptr):通过指针ptr访问其指向的值,即变量num的值,输出10

  7. *ptr = 20:修改指针ptr所指向的值,即修改变量num的值为20

  8. fmt.Println("New value of num:", num):输出修改后的变量num的值,即20

通过上述步骤,可以清晰地理解指针的基本使用方法:获取变量地址、访问指针指向的值以及修改指针指向的值。指针在Go语言中是一种重要的数据类型,能够有效地处理内存地址和数据交换,但也需要小心使用以避免指针相关的问题。

Go语言指针的应用场景

1. 传递函数参数

通过传递指针作为函数参数,可以在函数内部修改外部变量的值,避免函数参数的拷贝。这种方式可以有效地减少内存消耗,并且能够在函数内部对外部变量进行修改,达到更灵活的控制效果。

详解: 当函数参数以值传递方式传递时,会将参数的副本传递给函数,因此在函数内部对参数的修改不会影响到外部变量的值。而使用指针作为函数参数,则直接传递了变量的内存地址,函数内部对指针指向的内存进行修改,从而改变了外部变量的值。

示例:

package mainimport "fmt"func modifyValue(ptr *int) {*ptr = 100 // 修改指针指向的变量的值
}func main() {var num int = 10fmt.Println("Before:", num) // 输出:Before: 10modifyValue(&num) // 将num的地址传递给函数fmt.Println("After:", num) // 输出:After: 100,外部变量被修改了
}
2. 动态内存分配

使用指针可以在运行时动态分配内存,从而实现灵活的数据结构。在需要根据程序运行时的条件动态分配内存的情况下,指针可以提供更灵活的内存管理方式,避免静态分配带来的内存浪费或不足。

详解: 通过new关键字或make函数可以在运行时动态分配内存,返回的是指向新分配内存的指针。这使得我们可以根据程序运行时的需要动态创建变量或数据结构,提高程序的灵活性和性能。

示例:

package mainimport "fmt"func main() {ptr := new(int) // 使用new关键字动态分配一个整型变量的内存*ptr = 10fmt.Println("Value:", *ptr) // 输出:Value: 10
}
3. 访问底层硬件

在与底层硬件交互时,指针可以直接操作内存地址,提高程序的效率。通过指针直接读写内存,可以避免额外的内存拷贝操作,从而加速数据访问和处理过程。

详解: 访问底层硬件时,常常需要直接读写内存地址来与硬件进行通信。指针可以直接操作内存地址,因此在这种场景下,使用指针可以提高程序的效率和性能。

示例:(简单示例,实际场景会更复杂)

package mainimport "unsafe"func main() {var data int32 = 42addr := unsafe.Pointer(&data) // 获取data的内存地址// 访问底层硬件,写入数据hardwareWrite(addr, 100)// 从底层硬件读取数据result := hardwareRead(addr)println(result) // 输出:100
}// 模拟底层硬件写入数据的函数
func hardwareWrite(addr unsafe.Pointer, value int32) {// 实际操作...
}// 模拟底层硬件读取数据的函数
func hardwareRead(addr unsafe.Pointer) int32 {// 实际操作...return 100
}

通过上述示例,我们可以看到指针在访问底层硬件时的应用,通过直接操作内存地址,可以实现与硬件的高效交互。

进销存实例

以下是一个简单的指针进销存实例,用于管理产品的库存量和销售记录:

package mainimport "fmt"// Product 结构体表示产品信息
type Product struct {ID     intName   stringStock  int // 库存量Price  float64
}// 函数用于更新产品的库存量
func updateStock(product *Product, quantity int) {product.Stock += quantity
}// 函数用于记录产品的销售记录
func recordSale(product *Product, quantity int) {if product.Stock >= quantity {product.Stock -= quantityfmt.Printf("Sale recorded: %dx %s\n", quantity, product.Name)} else {fmt.Println("Insufficient stock to record sale.")}
}func main() {// 初始化产品信息iphone := Product{ID: 1, Name: "iPhone 12", Stock: 100, Price: 999.99}// 显示初始库存量fmt.Printf("Initial stock of %s: %d\n", iphone.Name, iphone.Stock)// 更新库存量updateStock(&iphone, 50)fmt.Printf("Stock after adding 50 %s: %d\n", iphone.Name, iphone.Stock)// 记录销售记录recordSale(&iphone, 30)// 显示更新后的库存量fmt.Printf("Final stock of %s: %d\n", iphone.Name, iphone.Stock)
}

详解:

  • Product 结构体:定义了产品的结构体,包含了产品的ID、名称、库存量和价格等信息。

  • updateStock 函数:接受一个指向 Product 结构体的指针和一个整数参数,用于更新产品的库存量。通过指针传递,可以直接修改产品的库存量,而无需进行值传递。

  • recordSale 函数:接受一个指向 Product 结构体的指针和一个整数参数,用于记录产品的销售记录。如果产品的库存量足够,就会记录销售记录并更新库存量;否则,会提示库存不足无法销售。

  • 主函数 main:初始化了一个名为 iPhone 12 的产品,显示了初始的库存量。然后调用了 updateStock 函数来增加 iPhone 12 的库存量,并调用 recordSale 函数记录了一次销售记录。最后,显示了更新后的库存量。

在这个例子中,通过使用指针作为函数参数,可以直接修改产品的库存量和记录销售记录,而无需进行复制和返回操作。这样可以提高程序的效率,并且更直观地表达了对产品数据的修改。

Go语言指针的注意事项

1. 空指针

空指针是指在声明时未初始化的指针,会被默认赋值为nil。如果在使用空指针时不进行有效的空指针判断,可能会导致程序崩溃或出现意外行为。

详解: 空指针在未经初始化时被默认赋值为nil,表示该指针不指向任何有效的内存地址。如果在使用空指针时尝试解引用或调用指针指向的方法,会触发空指针异常,导致程序崩溃。

示例:

package mainimport "fmt"func main() {var ptr *intfmt.Println(*ptr) // 尝试解引用空指针,会导致panic
}

在上述示例中,指针ptr未经初始化,因此被赋值为nil。尝试解引用空指针会导致panic。

2. 指针算术运算

Go语言不支持指针的算术运算,如ptr++等操作。因为指针的加减运算可能会导致内存越界或不可预期的行为,因此在Go语言中不允许进行指针的算术运算。

3. 指针逃逸

当指针逃逸到堆上分配内存时,需要注意内存泄漏的风险,及时释放不再使用的内存。如果忽略了指针逃逸导致的内存泄漏问题,会导致程序消耗过多的内存资源,影响系统的稳定性和性能。

4. 野指针

野指针是指针指向的内存可能已经被释放,但指针仍然保留着地址。使用野指针会导致未定义的行为,可能会读取到无效的数据,或者修改已经被释放的内存,从而导致程序崩溃或数据损坏。

示例:

package mainimport "fmt"func main() {var ptr *intvar num int = 10ptr = &numfmt.Println(*ptr) // 输出:10// 假设在这之后释放了num所在的内存,ptr成为野指针// 此时再次访问*ptr会导致未定义的行为fmt.Println(*ptr) // 未定义的行为
}

在上述示例中,ptr最初指向变量num的内存地址,但后续可能释放了num所在的内存,此时ptr成为野指针。再次访问*ptr会导致未定义的行为。

通过理解和遵守上述指针的注意事项,可以有效地避免指针相关的错误和问题,确保程序的稳定性和可靠性。

总结

指针在Go语言中具有重要的作用,它们不仅可以用于传递函数参数、动态内存分配,还可以在与底层硬件交互时提高程序的效率。然而,在使用指针时需要注意避免空指针和野指针的问题,以及合理管理内存。通过深入理解指针的原理和使用方法,可以更好地应用指针来提高程序的性能和灵活性。

相关文章:

掌握Go语言:探索Go语言指针,解锁高效内存操作与动态数据结构的奥秘(19)

指针是一个变量,它存储了另一个变量的地址。在Go语言中,指针提供了直接访问内存地址的能力,允许程序直接操作内存,这在某些场景下非常有用。 Go语言指针的详细使用方法 声明指针 可以使用*符号来声明指针变量,例如&…...

大数据面试题 —— Zookeeper

目录 ZooKeeper 的定义ZooKeeper 的特点ZooKeeper 的应用场景你觉得Zookeeper比较重要的功能ZooKeeper 的选举机制 ***zookeeper主节点故障,如何重新选举?ZooKeeper 的监听原理 ***zookeeper集群的节点数为什么建议奇数台 ***ZooKeeper 的部署方式有哪几…...

【安全类书籍-6】僵尸网络:网络程序杀手

目录 内容 用处 下载链接 内容 这本书着重探讨以下几个主题: 1. 僵尸网络基础:介绍僵尸网络的基本构成、运作机制以及在全球网络空间中的影响和威胁程度。 2. 僵尸网络技术剖析:详细分析僵尸网络的组件,如命令控制中心(C&C)、恶意软件传播途径、感染节点的招募和…...

文件的创建与删除

文件的创建 使用File类创建一个文件对象,例如:File filenew File("c:\\myletter" , "letter.txt"); public boolean createNewFile();/*如果c:\myletter目录中没 有名字为letter.txt文件,文件对象file调用createNewFil…...

图论题目集一(代码 注解)

目录 题目一&#xff1a; 题目二&#xff1a; 题目三&#xff1a; 题目四&#xff1a; 题目五&#xff1a; 题目六&#xff1a; 题目七&#xff1a; 题目一&#xff1a; #include<iostream> #include<queue> #include<cstring> using namespace st…...

解释MVC和MVVM架构模式

一、解释MVC和MVVM架构模式 MVC和MVVM都是常见的前端架构模式&#xff0c;用于抽象分离并解决特定问题。这两种模式在结构上具有一定的相似性&#xff0c;但在细节和数据处理方式上存在一些差异。 MVC&#xff0c;即Model-View-Controller&#xff0c;是一种用于应用程序分层…...

OLLAMA:如何像云端一样运行本地大语言模型

简介&#xff1a;揭开 OLLAMA 本地大语言模型的神秘面纱 您是否曾发现自己被云端语言模型的网络所缠绕&#xff0c;渴望获得更本地化、更具成本效益的解决方案&#xff1f;那么&#xff0c;您的探索到此结束。欢迎来到 OLLAMA 的世界&#xff0c;这个平台将彻底改变我们与大型…...

React全家桶及原理解析-lesson4-Redux

lesson4-react全家桶及原理解析.mov React全家桶及原理解析 React全家桶及原理解析 课堂⽬标资源起步Reducer 什么是reducer什么是reduceRedux 上⼿ 安装reduxredux上⼿检查点react-redux 异步代码抽取Redux拓展 redux原理 核⼼实现中间件实现redux-thunk原理react-redux原理 实…...

电商api数据接口技术开发来赞达lazada通过商品ID抓取商品详情信息item_get请求key接入演示

要获取Lazada的商品详情&#xff0c;你需要使用item_get请求。首先&#xff0c;你需要注册一个开发者账号并获取API密钥&#xff08;App Key和App Secret&#xff09;。然后&#xff0c;你可以使用以下Python代码示例来获取商品详情&#xff1a; # coding:utf-8 ""&…...

零基础入门多媒体音频(2)-音频焦点2

说实话&#xff0c;android的代码是越来越难以阅读。业务函数里面狗皮膏药似的补丁与日俱增。继上篇简要介绍音频焦点的文章&#xff0c;这篇文章的主要内容是分析audiofocus的实现。看了一下午的相关代码都没找到做audiofocus策略的核心逻辑。目前能看懂的大概包含下面两个逻辑…...

Spark杂谈

文章目录 什么是Spark对比HadoopSpark应用场景Spark数据处理流程什么是RDDSpark架构相关进程入门案例&#xff1a;统计单词数量Spark开启historyServer 什么是Spark Spark是一个用于大规模数据处理的统一计算引擎Spark一个重要的特性就是基于内存计算&#xff0c;从而它的速度…...

【PyTorch】进阶学习:一文详细介绍 torch.save() 的应用场景、实战代码示例

【PyTorch】进阶学习&#xff1a;一文详细介绍 torch.save() 的应用场景、实战代码示例 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程…...

私域流量运营的关键要素和基本步骤

解锁增长的四大关键&#xff1a; 关键要素一&#xff1a;精准营销 精准营销是私域流量运营的核心所在。通过精细化运营和个性化服务&#xff0c;企业可以将普通用户转化为忠实粉丝&#xff0c;提高用户的粘性和转化率。采用数据驱动的精准营销策略&#xff0c;深度挖掘用户需求…...

k8s部署hadoop

&#xff08;作者&#xff1a;陈玓玏&#xff09; 配置和模板参考helm仓库&#xff1a;https://artifacthub.io/packages/helm/apache-hadoop-helm/hadoop 先通过以下命令生成yaml文件&#xff1a; helm template hadoop pfisterer-hadoop/hadoop > hadoop.yaml用kube…...

deepspeed分布式训练在pytorch 扩展(PyTorch extensions)卡住

错误展示&#xff1a; Using /root/.cache/torch_extensions/py310_cu121 as PyTorch extensions root...
 Using /root/.cache/torch_extensions/py310_cu121 as PyTorch extensions root...
 错误表现&#xff1a; 出现在多卡训练过程的pytorch 扩展&#xff0c;deepspee…...

Rust 的 HashMap

在 Rust 中&#xff0c;HashMap 是一个从键&#xff08;key&#xff09;映射到值&#xff08;value&#xff09;的数据结构。它允许你以 O(1) 的平均时间复杂度存储、检索和删除键值对。HashMap 实现了 std::collections::HashMap 结构体&#xff0c;通常通过 use std::collect…...

exporter方式监控达梦数据库

蓝鲸监控 随着国产化和信创的深入&#xff0c;开始普遍使用国产化数据库–如达梦数据库&#xff0c;蓝鲸平台默认没有对其进行监控&#xff0c;但是平台了提供监控告警的能力。比如脚本采集&#xff0c;脚本的是一种灵活和快速的监控采集方式&#xff0c;不同层的监控对象都可…...

供应链安全之被忽略的软件质量管理平台安全

背景 随着我国信息化进程加速&#xff0c;网络安全问题更加凸显。关键信息基础设施和企业单位在满足等保合规的基础上&#xff0c;如何提升网络安全防御能力&#xff0c;降低安全事件发生概率&#xff1f;默安玄甲实验室针对SonarQube供应链安全事件进行分析&#xff0c;强调供…...

python入门(二)

python的安装很方便&#xff0c;我们这里就不再进行讲解&#xff0c;大家可以自己去搜索视频。下面分享一下Python的入门知识点。 执行命令的方式 在安装好python后&#xff0c;有两种方式可以执行命令&#xff1a; 命令行程序文件&#xff0c;后缀名为.py 对于命令行&…...

Mysql,MongoDB,Redis的横纵向对比

一,什么是Mysql Mysql是一款安全,可以跨平台,高效率的数据库系统,运行速度高,安全性能高,支持面向对象,安全性高,并且成本比较低,支持各种开发语言,数据库的存储容量大,有许多的内置函数。 二,什么是MongoDB MongoDB是基于分布式文件存储的数据库,是一个介于关…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...