遥感图像地物分类流程
遥感图像地物分类流程
1. 制作标签
使用arcgis pro或者arcgis或者envi,画标签,保存为tiff格式
2. 处理标签数据
用python gdal库安装 osgdal库,如果安装失败就需要下载 对应库得 .whl去安装,网站具体搞忘了,可以百度
或者rasterio库
2.1 读入tif数据
def readTif(fileName):"""dataset包含了tif文件得属性比如波段数高宽数据"""dataset = rasterio.open(fileName)if dataset == None:print(fileName + "文件无法打开")return None# print(dataset.width)return dataset
2.2 处理数据
import csv
# 提取栅格图像信息,制作数据
ori_dataset = readTif(orgin_path)
label_dataset = readTif(sample_path)width = ori_dataset.width # 宽
height = ori_dataset.height # 高bands = ori_dataset.count # 波段数
# ori_data = for k in range(bands)label_matri = label_dataset.read(1) #读出标签的矩阵
data_matri = ori_dataset.read() #原始图像的矩阵count = np.count_nonzero(label_matri) #非零就是标签, 有多少非零的就代表样本像素是多少
print(count)
train_data = np.zeros((count, 8), dtype=data_matri.dtype) # 新建一个count*8的numpy数组,第8维度是原始图像的某一像素点对应的标签,0~6代表这一个像素点对应的7ge波段,landsata影像
nonzero_indices = np.nonzero(label_matri) #非零索引, 返回的是
"""
(row:array([ 30, 31, 31, ..., 390, 390, 390], dtype=int64), col:array([166, 165, 166, ..., 186, 187, 188], dtype=int64))
"""
print(nonzero_indices)
# 写入数据csv, 提取训练数据
# 将 train_data 写入 CSV 文件
csv_file = open(csv_filename, mode='w', newline='')
csv_writer = csv.writer(csv_file)
# 写入 CSV 文件的标题行,包括 Label 和 LabelName
csv_writer.writerow(csv_head_name)for i in range(count):print(i)row, col = nonzero_indices[0][i], nonzero_indices[1][i]train_data[i, :7] = data_matri[:, row, col]train_data[i, 7] = label_matri[row, col]label = int(train_data[i, 7])row_data = train_data[i]row_data = np.append(row_data, labels_name[label]) # 在数据行中添加 LabelNamecsv_writer.writerow(row_data)print(f"已将数据写入 CSV 文件: {csv_filename}")
csv_file.close()
2.3 数据格式
生成的数据格式如下
Band1,Band2,Band3,Band4,Band5,Band6,Band7,Label,LabelName
812,774,969,1111,1152,1146,1069,2,building
801,755,846,1016,1177,1411,1472,2,building
794,748,949,1179,1202,1399,1383,2,building
605,567,691,877,1537,1880,2070,2,building
602,556,768,994,1506,1625,1607,2,building
613,570,768,1045,1394,1483,1460,2,building
465,408,562,772,963,1035,990,2,building
549,484,648,828,969,1096,1028,2,building
3. 训练
from sklearn.ensemble import RandomForestClassifier
from sklearn import model_selection
import pickleX = train_data[:, :7]
Y = train_data[:, 7]
# print(X.shape)
# print(Y.shape)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, Y, test_size=0.1, random_state=42, stratify=Y)
print(y_train)
# 3.用100个树来创建随机森林模型,训练随机森林
classifier = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
classifier.fit(X_train, y_train)# 4.计算随机森林的准确率
print("训练集:",classifier.score(X_train,y_train))
print("测试集:",classifier.score(X_test,y_test))pred_test_y = classifier.predict(X_test)
cfm = CFM(5, labels_name)
cfm.update(pred_test_y, y_test)
acc, comment_numpy = cfm.get_cfm()
print(comment_numpy)
cfm.plot()file = open(model_path, "wb")
#将模型写入文件:
pickle.dump(classifier, file)
#最后关闭文件:
file.close()
4. 使用模型预测
pred_dataset = readTif(pred_path)
pred_width = pred_dataset.width
pred_height = pred_dataset.height
pred_bands = pred_dataset.count
pred_geotrans = pred_dataset.transform
pred_crs = pred_dataset.crsprint(pred_geotrans)
print(pred_crs)file = open(model_path, "rb")
# 把模型从文件中读取出来
rf_model = pickle.load(file)
# 关闭文件
file.close()pred_martix = pred_dataset.read()
data = np.zeros((pred_martix.shape[0], pred_martix.shape[1] * pred_martix.shape[2]))# print(pred_martix.shape)
# print(pred_martix[0])
for i in range(pred_martix.shape[0]):# 第i个波段一维数组data[i] = pred_martix[i].flatten()
# 转换下维度
pred_x = data.swapaxes(0, 1)pred_y = rf_model.predict(pred_x)
# print(pred_y, pred_y.shape)# 将标签还原为图像的二维矩阵
pred_image = pred_y.reshape(pred_martix.shape[1], pred_martix.shape[2])
height_, width_ = pred_image.shape
tif_data = np.zeros((height_, width_, 3), dtype=np.int64)
for label, color in color_mapping.items():tif_data[pred_image == label] = colortif_data = np.transpose(tif_data, (2, 0, 1))im_bands, im_height, im_width = tif_data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(pred_result_tif_path, im_width, im_height, im_bands, gdal.GDT_Byte)
for i in range(im_bands):dataset.GetRasterBand(i + 1).WriteArray(tif_data[i])
# if dataset != None:
# #将栅格数据和地理坐标系统关联起来
# dataset.SetProjection(pred_crs) # 写入投影
# dataset.SetGeoTransform(pred_geotrans) # 写入仿射变换参数dataset = None
5. other
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTableclass CFM:"""混淆矩阵类返回精度和混淆举证"""def __init__(self, num_classes: int, labels: list):self.matrix = np.zeros((num_classes, num_classes))self.num_classes = num_classesself.labels = labelsdef plot(self):matrix = self.matrixprint(matrix)plt.imshow(matrix, cmap=plt.cm.Blues)# 设置x轴坐标labelplt.xticks(range(self.num_classes), self.labels, rotation=45)# 设置y轴坐标labelplt.yticks(range(self.num_classes), self.labels)# 显示colorbarplt.colorbar()plt.xlabel('True Labels')plt.ylabel('Predicted Labels')plt.title('Confusion matrix')# 在图中标注数量/概率信息thresh = matrix.max() / 2for x in range(self.num_classes):for y in range(self.num_classes):# 注意这里的matrix[y, x]不是matrix[x, y]info = int(matrix[y, x])plt.text(x, y, info,verticalalignment='center',horizontalalignment='center',color="white" if info > thresh else "black")plt.tight_layout()plt.show()def update(self, preds, labels):"""_summary_Args:preds (_type_): _description_labels (_type_): _description_preds:预测值labels:真实值confusion martixlabel0 label1 label2 label3pred0pred1pred2pred3"""for p, t in zip(preds, labels):self.matrix[p, t] += 1print("confusion matrix", self.matrix)def get_cfm(self):"""Accuarcy: 正确样本占总样本数量的比例Percision: 精度PrecisionRecall: 召回率Specificaity: 特异性"""sum_true = 0for i in range(self.num_classes):sum_true += self.matrix[i, i]acc = sum_true / np.sum(self.matrix)print("the model accuracy is ", acc)comment_labels = ["categeory", "Precision", "Recall", "Specificity"]tabel = PrettyTable()tabel.field_names = comment_labelscomment_numpy = np.zeros((self.num_classes, 3))for i in range(self.num_classes):# 第i个分类的精确率, 召回率, 特异度TP = self.matrix[i, i]FP = np.sum(self.matrix[i, :]) - TPFN = np.sum(self.matrix[:, i]) - TPTN = np.sum(self.matrix) - TP - FN - FP# 保留三位小数, 如果 TP + FN 不等于零,就计算并将结果四舍五入到小数点后三位;否则,率设置为0。Precision = round(TP / (TP + FP), 3) if TP + FP != 0 else 0.Recall = round(TP / (TP + FN), 3) if TP + FN != 0 else 0.Specificity = round(TN / (TN + FP), 3) if TN + FP != 0 else 0.tabel.add_row([self.labels[i], Precision, Recall, Specificity])comment_numpy[i] = [Precision, Recall, Specificity]print(tabel)return acc, comment_numpyif __name__ == "__main__":cfm = CFM(2, ["cat", "dog"])actual = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]predicted = [1, 0, 1, 0, 0, 1, 1, 1, 1, 0]cfm.update(predicted, actual)acc, comment_numpy = cfm.get_cfm()print(comment_numpy)cfm.plot()
变量名代表得含义
sample_path = "../sample/sample.tif" #标签图
orgin_path = "../datasets/landsat.tif" #原始图
pred_path = "../datasets/landsat.tif" #需要预测的图
txt_Path = "./result/label_data.txt" #无
labels_name = ["", "tudi", "building", "veg", "water"] # 样本名字,分类的类别
csv_filename = '../result/train_data.csv' # 生成训练数据的存放路径
csv_head_name = ['Band1', 'Band2', 'Band3', 'Band4', 'Band5', 'Band6', 'Band7', 'Label', "LabelName"] # 存放格式
model_path = "../model/myrnf.pickle" # 最终保存的模型路径
pred_result_tif_path = "../result/pred_landsat.tif" # 用训练的模型保存的路径
color_mapping = {1: (255, 255, 0),2: (255, 0, 0),3: (0, 255, 0),4: (0, 0, 255)
}
# 颜色映射从2D标签映射到3D
相关文章:
遥感图像地物分类流程
遥感图像地物分类流程 1. 制作标签 使用arcgis pro或者arcgis或者envi,画标签,保存为tiff格式 2. 处理标签数据 用python gdal库安装 osgdal库,如果安装失败就需要下载 对应库得 .whl去安装,网站具体搞忘了,可以百…...
JS13-事件的绑定和事件对象Event
绑定事件的两种方式/DOM事件的级别 DOM0的写法:onclick element.onclick function () {}举例: <body> <button>点我</button> <script>var btn document.getElementsByTagName("button")[0];//这种事件绑定的方式…...
pycorrector检测OCR错字实践
参考:https://github.com/shibing624/pycorrector/tree/master/examples/macbert stopwords.txt 添加专业停用词,避免错误 设置自定义词典,避免将正确的词错误检测成错误的词 from pycorrector import Corrector m Corrector() m.set_cus…...
RDD算子介绍(三)
1. join 将相同的key的值连接在一起,值的类型可以不同 val rdd1 : RDD[(String, Int)] sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3))) val rdd2 : RDD[(String, Int)] sc.makeRDD(List(("a", 4), ("b", 5…...
Redis的脑裂问题
Redis 脑裂(Split-brain)问题是指在分布式系统中,特别是基于主从复制和哨兵(Sentinel)模式的Redis集群中,由于网络分区(network partition)而导致部分节点组成了独立可用的服务&…...
【算法】雪花算法生成分布式 ID
SueWakeup 个人中心:SueWakeup 系列专栏:学习Java框架 个性签名:人生乏味啊,我欲令之光怪陆离 本文封面由 凯楠📷 友情赞助播出! 目录 1. 什么是分布式 ID 2. 分布式 ID 基本要求 3. 数据库主键自增 4. UUID 5. S…...
FFplay使用滤镜添加字幕到现有视频显示
1.创建字幕文件4k.srt 4k.srt内容: 1 00:00:01.000 --> 00:00:30.000 日照香炉生紫烟2 00:00:31.000 --> 00:00:60.000 遥看瀑布挂前川3 00:01:01.000 --> 00:01:30.000 飞流直下三千尺4 00:01:31.000 --> 00:02:00.000 疑是银河落九天2.通过使用滤镜显示字幕在视…...
【Python + Django】Django模板语法 + 请求和响应
前言: 现在现在,我们要开始将变量的值展现在页面上面啦! 要是只会显示静态页面,我们的页面也太难看和死板了, 并且数据库的数据也没法展现在页面上。 但是呢,模板语法学习之后就可以啦!&…...
大数据面试总结 四
1、当hadoop集群中某一个节点挂了,内部数据流程是如何进行的? 每一个datanode都会定期向namenode发送heardbeat消息,当一段时间namenode没有接收到某一个datanode的消息,此时namenode就会将该datanode标记为死亡,并不…...
Spring Boot: 使用MongoOperations操作mongodb
一、添加依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4…...
PyTorch 深度学习(GPT 重译)(六)
十四、端到端结节分析,以及接下来的步骤 本章内容包括 连接分割和分类模型 为新任务微调网络 将直方图和其他指标类型添加到 TensorBoard 从过拟合到泛化 在过去的几章中,我们已经构建了许多对我们的项目至关重要的系统。我们开始加载数据…...
MyBatis3源码深度解析(十七)MyBatis缓存(一)一级缓存和二级缓存的实现原理
文章目录 前言第六章 MyBatis缓存6.1 MyBatis缓存实现类6.2 MyBatis一级缓存实现原理6.2.1 一级缓存在查询时的使用6.2.2 一级缓存在更新时的清空 6.3 MyBatis二级缓存的实现原理6.3.1 实现的二级缓存的Executor类型6.3.2 二级缓存在查询时使用6.3.3 二级缓存在更新时清空 前言…...
Go --- Go语言垃圾处理
概念 垃圾回收(GC-Garbage Collection)暂停程序业务逻辑SWT(stop the world)程序根节点:程序中被直接或间接引用的对象集合,能通过他们找出所有可以被访问到的对象,所以Go程序的根节点通常包括…...
力扣每日一题30:串联所有单词的子串
题目描述 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如,如果 words ["ab","cd","ef"], 那么 &q…...
vim | vim的快捷命令行
快捷进入shell界面 -> :nnoremap <F8> :sh<CR> -> 绑定到了F8 :nnoremap <F8> :sh<CR> 快捷执行 -> :nnoremap <F5> :wa<CR>:!g % -o a.out && ./a.out<CR> -> 绑定到了F5 :nnoremap <F5> :wa<CR>…...
项目管理平台-01-BugClose 入门介绍
拓展阅读 Devops-01-devops 是什么? Devops-02-Jpom 简而轻的低侵入式在线构建、自动部署、日常运维、项目监控软件 代码质量管理 SonarQube-01-入门介绍 项目管理平台-01-jira 入门介绍 缺陷跟踪管理系统,为针对缺陷管理、任务追踪和项目管理的商业…...
web集群-lvs-DR模式基本配置
目录 环境: 一、配置RS 1、安装常见软件 2、配置web服务 3、添加vip 4、arp抑制 二、配置LVS 1、添加vip 2、安装配置工具 3、配置DR 三、测试 四、脚本方式配置 1、LVS-DR 2、LVS-RS 环境: master lvs 192.168.80.161 no…...
基于深度学习的面部情绪识别算法仿真与分析
声明:以下内容均属于本人本科论文内容,禁止盗用,否则将追究相关责任 基于深度学习的面部情绪识别算法仿真与分析 摘要结果分析1、本次设计通过网络爬虫技术获取了七种面部情绪图片:吃惊、恐惧、厌恶、高兴、伤心、愤怒、自然各若…...
C语言经典面试题目(十六)
1、什么是C语言中的指针常量和指针变量?它们有什么区别? 在C语言中,指针常量和指针变量是指针的两种不同类型。它们的区别在于指针的指向和指针本身是否可以被修改。 指针常量:指针指向的内存地址不可变,但指针本身的…...
【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】
欢迎来CILMY23的博客喔,本篇为【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】,感谢观看,支持的可以给个一键三连,点赞关注收藏。 前言 欢迎来到本篇博客&…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
