遥感图像地物分类流程
遥感图像地物分类流程
1. 制作标签
使用arcgis pro或者arcgis或者envi,画标签,保存为tiff格式
2. 处理标签数据
用python gdal库安装 osgdal库,如果安装失败就需要下载 对应库得 .whl去安装,网站具体搞忘了,可以百度
或者rasterio库
2.1 读入tif数据
def readTif(fileName):"""dataset包含了tif文件得属性比如波段数高宽数据"""dataset = rasterio.open(fileName)if dataset == None:print(fileName + "文件无法打开")return None# print(dataset.width)return dataset
2.2 处理数据
import csv
# 提取栅格图像信息,制作数据
ori_dataset = readTif(orgin_path)
label_dataset = readTif(sample_path)width = ori_dataset.width # 宽
height = ori_dataset.height # 高bands = ori_dataset.count # 波段数
# ori_data = for k in range(bands)label_matri = label_dataset.read(1) #读出标签的矩阵
data_matri = ori_dataset.read() #原始图像的矩阵count = np.count_nonzero(label_matri) #非零就是标签, 有多少非零的就代表样本像素是多少
print(count)
train_data = np.zeros((count, 8), dtype=data_matri.dtype) # 新建一个count*8的numpy数组,第8维度是原始图像的某一像素点对应的标签,0~6代表这一个像素点对应的7ge波段,landsata影像
nonzero_indices = np.nonzero(label_matri) #非零索引, 返回的是
"""
(row:array([ 30, 31, 31, ..., 390, 390, 390], dtype=int64), col:array([166, 165, 166, ..., 186, 187, 188], dtype=int64))
"""
print(nonzero_indices)
# 写入数据csv, 提取训练数据
# 将 train_data 写入 CSV 文件
csv_file = open(csv_filename, mode='w', newline='')
csv_writer = csv.writer(csv_file)
# 写入 CSV 文件的标题行,包括 Label 和 LabelName
csv_writer.writerow(csv_head_name)for i in range(count):print(i)row, col = nonzero_indices[0][i], nonzero_indices[1][i]train_data[i, :7] = data_matri[:, row, col]train_data[i, 7] = label_matri[row, col]label = int(train_data[i, 7])row_data = train_data[i]row_data = np.append(row_data, labels_name[label]) # 在数据行中添加 LabelNamecsv_writer.writerow(row_data)print(f"已将数据写入 CSV 文件: {csv_filename}")
csv_file.close()
2.3 数据格式
生成的数据格式如下
Band1,Band2,Band3,Band4,Band5,Band6,Band7,Label,LabelName
812,774,969,1111,1152,1146,1069,2,building
801,755,846,1016,1177,1411,1472,2,building
794,748,949,1179,1202,1399,1383,2,building
605,567,691,877,1537,1880,2070,2,building
602,556,768,994,1506,1625,1607,2,building
613,570,768,1045,1394,1483,1460,2,building
465,408,562,772,963,1035,990,2,building
549,484,648,828,969,1096,1028,2,building
3. 训练
from sklearn.ensemble import RandomForestClassifier
from sklearn import model_selection
import pickleX = train_data[:, :7]
Y = train_data[:, 7]
# print(X.shape)
# print(Y.shape)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, Y, test_size=0.1, random_state=42, stratify=Y)
print(y_train)
# 3.用100个树来创建随机森林模型,训练随机森林
classifier = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
classifier.fit(X_train, y_train)# 4.计算随机森林的准确率
print("训练集:",classifier.score(X_train,y_train))
print("测试集:",classifier.score(X_test,y_test))pred_test_y = classifier.predict(X_test)
cfm = CFM(5, labels_name)
cfm.update(pred_test_y, y_test)
acc, comment_numpy = cfm.get_cfm()
print(comment_numpy)
cfm.plot()file = open(model_path, "wb")
#将模型写入文件:
pickle.dump(classifier, file)
#最后关闭文件:
file.close()
4. 使用模型预测
pred_dataset = readTif(pred_path)
pred_width = pred_dataset.width
pred_height = pred_dataset.height
pred_bands = pred_dataset.count
pred_geotrans = pred_dataset.transform
pred_crs = pred_dataset.crsprint(pred_geotrans)
print(pred_crs)file = open(model_path, "rb")
# 把模型从文件中读取出来
rf_model = pickle.load(file)
# 关闭文件
file.close()pred_martix = pred_dataset.read()
data = np.zeros((pred_martix.shape[0], pred_martix.shape[1] * pred_martix.shape[2]))# print(pred_martix.shape)
# print(pred_martix[0])
for i in range(pred_martix.shape[0]):# 第i个波段一维数组data[i] = pred_martix[i].flatten()
# 转换下维度
pred_x = data.swapaxes(0, 1)pred_y = rf_model.predict(pred_x)
# print(pred_y, pred_y.shape)# 将标签还原为图像的二维矩阵
pred_image = pred_y.reshape(pred_martix.shape[1], pred_martix.shape[2])
height_, width_ = pred_image.shape
tif_data = np.zeros((height_, width_, 3), dtype=np.int64)
for label, color in color_mapping.items():tif_data[pred_image == label] = colortif_data = np.transpose(tif_data, (2, 0, 1))im_bands, im_height, im_width = tif_data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(pred_result_tif_path, im_width, im_height, im_bands, gdal.GDT_Byte)
for i in range(im_bands):dataset.GetRasterBand(i + 1).WriteArray(tif_data[i])
# if dataset != None:
# #将栅格数据和地理坐标系统关联起来
# dataset.SetProjection(pred_crs) # 写入投影
# dataset.SetGeoTransform(pred_geotrans) # 写入仿射变换参数dataset = None
5. other
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTableclass CFM:"""混淆矩阵类返回精度和混淆举证"""def __init__(self, num_classes: int, labels: list):self.matrix = np.zeros((num_classes, num_classes))self.num_classes = num_classesself.labels = labelsdef plot(self):matrix = self.matrixprint(matrix)plt.imshow(matrix, cmap=plt.cm.Blues)# 设置x轴坐标labelplt.xticks(range(self.num_classes), self.labels, rotation=45)# 设置y轴坐标labelplt.yticks(range(self.num_classes), self.labels)# 显示colorbarplt.colorbar()plt.xlabel('True Labels')plt.ylabel('Predicted Labels')plt.title('Confusion matrix')# 在图中标注数量/概率信息thresh = matrix.max() / 2for x in range(self.num_classes):for y in range(self.num_classes):# 注意这里的matrix[y, x]不是matrix[x, y]info = int(matrix[y, x])plt.text(x, y, info,verticalalignment='center',horizontalalignment='center',color="white" if info > thresh else "black")plt.tight_layout()plt.show()def update(self, preds, labels):"""_summary_Args:preds (_type_): _description_labels (_type_): _description_preds:预测值labels:真实值confusion martixlabel0 label1 label2 label3pred0pred1pred2pred3"""for p, t in zip(preds, labels):self.matrix[p, t] += 1print("confusion matrix", self.matrix)def get_cfm(self):"""Accuarcy: 正确样本占总样本数量的比例Percision: 精度PrecisionRecall: 召回率Specificaity: 特异性"""sum_true = 0for i in range(self.num_classes):sum_true += self.matrix[i, i]acc = sum_true / np.sum(self.matrix)print("the model accuracy is ", acc)comment_labels = ["categeory", "Precision", "Recall", "Specificity"]tabel = PrettyTable()tabel.field_names = comment_labelscomment_numpy = np.zeros((self.num_classes, 3))for i in range(self.num_classes):# 第i个分类的精确率, 召回率, 特异度TP = self.matrix[i, i]FP = np.sum(self.matrix[i, :]) - TPFN = np.sum(self.matrix[:, i]) - TPTN = np.sum(self.matrix) - TP - FN - FP# 保留三位小数, 如果 TP + FN 不等于零,就计算并将结果四舍五入到小数点后三位;否则,率设置为0。Precision = round(TP / (TP + FP), 3) if TP + FP != 0 else 0.Recall = round(TP / (TP + FN), 3) if TP + FN != 0 else 0.Specificity = round(TN / (TN + FP), 3) if TN + FP != 0 else 0.tabel.add_row([self.labels[i], Precision, Recall, Specificity])comment_numpy[i] = [Precision, Recall, Specificity]print(tabel)return acc, comment_numpyif __name__ == "__main__":cfm = CFM(2, ["cat", "dog"])actual = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]predicted = [1, 0, 1, 0, 0, 1, 1, 1, 1, 0]cfm.update(predicted, actual)acc, comment_numpy = cfm.get_cfm()print(comment_numpy)cfm.plot()
变量名代表得含义
sample_path = "../sample/sample.tif" #标签图
orgin_path = "../datasets/landsat.tif" #原始图
pred_path = "../datasets/landsat.tif" #需要预测的图
txt_Path = "./result/label_data.txt" #无
labels_name = ["", "tudi", "building", "veg", "water"] # 样本名字,分类的类别
csv_filename = '../result/train_data.csv' # 生成训练数据的存放路径
csv_head_name = ['Band1', 'Band2', 'Band3', 'Band4', 'Band5', 'Band6', 'Band7', 'Label', "LabelName"] # 存放格式
model_path = "../model/myrnf.pickle" # 最终保存的模型路径
pred_result_tif_path = "../result/pred_landsat.tif" # 用训练的模型保存的路径
color_mapping = {1: (255, 255, 0),2: (255, 0, 0),3: (0, 255, 0),4: (0, 0, 255)
}
# 颜色映射从2D标签映射到3D
相关文章:
遥感图像地物分类流程
遥感图像地物分类流程 1. 制作标签 使用arcgis pro或者arcgis或者envi,画标签,保存为tiff格式 2. 处理标签数据 用python gdal库安装 osgdal库,如果安装失败就需要下载 对应库得 .whl去安装,网站具体搞忘了,可以百…...

JS13-事件的绑定和事件对象Event
绑定事件的两种方式/DOM事件的级别 DOM0的写法:onclick element.onclick function () {}举例: <body> <button>点我</button> <script>var btn document.getElementsByTagName("button")[0];//这种事件绑定的方式…...

pycorrector检测OCR错字实践
参考:https://github.com/shibing624/pycorrector/tree/master/examples/macbert stopwords.txt 添加专业停用词,避免错误 设置自定义词典,避免将正确的词错误检测成错误的词 from pycorrector import Corrector m Corrector() m.set_cus…...

RDD算子介绍(三)
1. join 将相同的key的值连接在一起,值的类型可以不同 val rdd1 : RDD[(String, Int)] sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3))) val rdd2 : RDD[(String, Int)] sc.makeRDD(List(("a", 4), ("b", 5…...
Redis的脑裂问题
Redis 脑裂(Split-brain)问题是指在分布式系统中,特别是基于主从复制和哨兵(Sentinel)模式的Redis集群中,由于网络分区(network partition)而导致部分节点组成了独立可用的服务&…...

【算法】雪花算法生成分布式 ID
SueWakeup 个人中心:SueWakeup 系列专栏:学习Java框架 个性签名:人生乏味啊,我欲令之光怪陆离 本文封面由 凯楠📷 友情赞助播出! 目录 1. 什么是分布式 ID 2. 分布式 ID 基本要求 3. 数据库主键自增 4. UUID 5. S…...

FFplay使用滤镜添加字幕到现有视频显示
1.创建字幕文件4k.srt 4k.srt内容: 1 00:00:01.000 --> 00:00:30.000 日照香炉生紫烟2 00:00:31.000 --> 00:00:60.000 遥看瀑布挂前川3 00:01:01.000 --> 00:01:30.000 飞流直下三千尺4 00:01:31.000 --> 00:02:00.000 疑是银河落九天2.通过使用滤镜显示字幕在视…...

【Python + Django】Django模板语法 + 请求和响应
前言: 现在现在,我们要开始将变量的值展现在页面上面啦! 要是只会显示静态页面,我们的页面也太难看和死板了, 并且数据库的数据也没法展现在页面上。 但是呢,模板语法学习之后就可以啦!&…...
大数据面试总结 四
1、当hadoop集群中某一个节点挂了,内部数据流程是如何进行的? 每一个datanode都会定期向namenode发送heardbeat消息,当一段时间namenode没有接收到某一个datanode的消息,此时namenode就会将该datanode标记为死亡,并不…...
Spring Boot: 使用MongoOperations操作mongodb
一、添加依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4…...

PyTorch 深度学习(GPT 重译)(六)
十四、端到端结节分析,以及接下来的步骤 本章内容包括 连接分割和分类模型 为新任务微调网络 将直方图和其他指标类型添加到 TensorBoard 从过拟合到泛化 在过去的几章中,我们已经构建了许多对我们的项目至关重要的系统。我们开始加载数据…...

MyBatis3源码深度解析(十七)MyBatis缓存(一)一级缓存和二级缓存的实现原理
文章目录 前言第六章 MyBatis缓存6.1 MyBatis缓存实现类6.2 MyBatis一级缓存实现原理6.2.1 一级缓存在查询时的使用6.2.2 一级缓存在更新时的清空 6.3 MyBatis二级缓存的实现原理6.3.1 实现的二级缓存的Executor类型6.3.2 二级缓存在查询时使用6.3.3 二级缓存在更新时清空 前言…...

Go --- Go语言垃圾处理
概念 垃圾回收(GC-Garbage Collection)暂停程序业务逻辑SWT(stop the world)程序根节点:程序中被直接或间接引用的对象集合,能通过他们找出所有可以被访问到的对象,所以Go程序的根节点通常包括…...
力扣每日一题30:串联所有单词的子串
题目描述 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如,如果 words ["ab","cd","ef"], 那么 &q…...
vim | vim的快捷命令行
快捷进入shell界面 -> :nnoremap <F8> :sh<CR> -> 绑定到了F8 :nnoremap <F8> :sh<CR> 快捷执行 -> :nnoremap <F5> :wa<CR>:!g % -o a.out && ./a.out<CR> -> 绑定到了F5 :nnoremap <F5> :wa<CR>…...
项目管理平台-01-BugClose 入门介绍
拓展阅读 Devops-01-devops 是什么? Devops-02-Jpom 简而轻的低侵入式在线构建、自动部署、日常运维、项目监控软件 代码质量管理 SonarQube-01-入门介绍 项目管理平台-01-jira 入门介绍 缺陷跟踪管理系统,为针对缺陷管理、任务追踪和项目管理的商业…...

web集群-lvs-DR模式基本配置
目录 环境: 一、配置RS 1、安装常见软件 2、配置web服务 3、添加vip 4、arp抑制 二、配置LVS 1、添加vip 2、安装配置工具 3、配置DR 三、测试 四、脚本方式配置 1、LVS-DR 2、LVS-RS 环境: master lvs 192.168.80.161 no…...

基于深度学习的面部情绪识别算法仿真与分析
声明:以下内容均属于本人本科论文内容,禁止盗用,否则将追究相关责任 基于深度学习的面部情绪识别算法仿真与分析 摘要结果分析1、本次设计通过网络爬虫技术获取了七种面部情绪图片:吃惊、恐惧、厌恶、高兴、伤心、愤怒、自然各若…...
C语言经典面试题目(十六)
1、什么是C语言中的指针常量和指针变量?它们有什么区别? 在C语言中,指针常量和指针变量是指针的两种不同类型。它们的区别在于指针的指向和指针本身是否可以被修改。 指针常量:指针指向的内存地址不可变,但指针本身的…...

【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】
欢迎来CILMY23的博客喔,本篇为【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】,感谢观看,支持的可以给个一键三连,点赞关注收藏。 前言 欢迎来到本篇博客&…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...