当前位置: 首页 > news >正文

五分钟搞懂MySQL索引下推

什么是索引下推

索引下推(Index Condition Pushdown,简称ICP),是MySQL5.6版本的新特性,它能减少回表查询次数,提高查询效率。

索引下推优化的原理

我们先简单了解一下MySQL大概的架构:

MySQL服务层负责SQL语法解析、生成执行计划等,并调用存储引擎层去执行数据的存储和检索。

索引下推下推其实就是指将部分上层(服务层)负责的事情,交给了下层(引擎层)去处理。

我们来具体看一下,在没有使用ICP的情况下,MySQL的查询:

  • 存储引擎读取索引记录;
  • 根据索引中的主键值,定位并读取完整的行记录;
  • 存储引擎把记录交给Server层去检测该记录是否满足WHERE条件。

使用ICP的情况下,查询过程:

  • 存储引擎读取索引记录(不是完整的行记录);
  • 判断WHERE条件部分能否用索引中的列来做检查,条件不满足,则处理下一行索引记录;
  • 条件满足,使用索引中的主键去定位并读取完整的行记录(就是所谓的回表);
  • 存储引擎把记录交给Server层,Server层检测该记录是否满足WHERE条件的其余部分。

索引下推的具体实践

理论比较抽象,我们来上一个实践。

使用一张用户表tuser,表里创建联合索引(name, age)。

如果现在有一个需求:检索出表中名字第一个字是张,而且年龄是10岁的所有用户。那么,SQL语句是这么写的:

select * from tuser where name like '张%' and age=10;

假如你了解索引最左匹配原则,那么就知道这个语句在搜索索引树的时候,只能用 ,找到的第一个满足条件的记录id为1。

那接下来的步骤是什么呢?

没有使用ICP

在MySQL 5.6之前,存储引擎根据通过联合索引找到name like '张%' 的主键id(1、4),逐一进行回表扫描,去聚簇索引找到完整的行记录,server层再对数据根据age=10进行筛选

我们看一下示意图:

可以看到需要回表两次,把我们联合索引的另一个字段age浪费了。

使用ICP

而MySQL 5.6 以后, 存储引擎根据(name,age)联合索引,找到name like '张%',由于联合索引中包含age列,所以存储引擎直接再联合索引里按照age=10过滤。按照过滤后的数据再一一进行回表扫描。

我们看一下示意图:

可以看到只回表了一次。

除此之外我们还可以看一下执行计划,看到Extra一列里 Using index condition,这就是用到了索引下推。

+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type  | possible_keys | key      | key_len | ref  | rows | filtered | Extra                 |
+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
|  1 | SIMPLE      | tuser | NULL       | range | na_index      | na_index | 102     | NULL |    2 |    25.00 | Using index condition |
+----+-------------+-------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+

索引下推使用条件

  • 只能用于rangerefeq_refref_or_null访问方法;
  • 只能用于InnoDBMyISAM存储引擎及其分区表;
  • InnoDB存储引擎来说,索引下推只适用于二级索引(也叫辅助索引);

索引下推的目的是为了减少回表次数,也就是要减少IO操作。对于InnoDB聚簇索引来说,数据和索引是在一起的,不存在回表这一说。

  • 引用了子查询的条件不能下推;
  • 引用了存储函数的条件不能下推,因为存储引擎无法调用存储函数。

相关系统参数

索引条件下推默认是开启的,可以使用系统参数optimizer_switch来控制器是否开启。

查看默认状态:

 

切换状态:

set optimizer_switch="index_condition_pushdown=off";
set optimizer_switch="index_condition_pushdown=on";

相关文章:

五分钟搞懂MySQL索引下推

什么是索引下推 索引下推(Index Condition Pushdown,简称ICP),是MySQL5.6版本的新特性,它能减少回表查询次数,提高查询效率。 索引下推优化的原理 我们先简单了解一下MySQL大概的架构: MySQL服务层负责SQL语法解析、…...

【数据库】SQL如何添加数据

在SQL中,您可以使用INSERT INTO语句来添加数据到数据库表中。以下是一些基本的示例和解释: 1.插入完整行数据: 如果您想为表中的每一列都插入数据,那么可以不必指定列名。但是,您需要为每一列都提供数据,并…...

ClickHouse01-什么是ClickHouse

什么是ClickHouse? 关于发展历史存在的优势与劣势什么是它风靡的原因? 什么是ClickHouse? 官方给出的回答是,它是一个高性能、列式存储、基于SQL、供在线分析处理的数据库管理系统 当然这边不得不提到OLAP(Online Analytical Pr…...

使用Docker搭建Nascab

使用Docker来部署Nascab能够让这个过程变得更加灵活和便捷,因为Docker可以在隔离的环境中运行应用程序,简化了部署和配置的复杂性。 使用Docker CLI部署Nascab docker run -d \ --name nascab \ -p 18080:80 \ -p 18443:443 \ -p 18090:90 \ -p 18021:…...

Elasticsearch8.x版本Java客户端Elasticsearch Java API 如何并发修改

前言 并发控制,一般有两种方案,悲观锁和乐观锁,其中悲观锁是默认每次更新操作肯定会冲突,所以每次操作都要先获取锁,操作完毕再释放锁,适用于写比较多的场景。而乐观锁是默认每次更新操作都不会冲突&#…...

Docker 安装 Skywalking以及UI界面

关于Skywalking 在现代分布式系统架构中,应用性能监控(Application Performance Monitoring, APM)扮演着至关重要的角色。本文将聚焦于一款备受瞩目的开源APM工具——Apache Skywalking,通过对其功能特性和工作原理的详细介绍&am…...

mysql 空间查询 多边形内的点

数据库查询 # 1新增空间point类型坐标字段 ALTER TABLE gaoxin_isdp.business_master ADD COLUMN location2 point NULL AFTER location;# 2从原字段更新点位字段,原字段poi1是字符串106.474596,29.464360 UPDATE business_master SET location POINT(substr(poi…...

实际开发中,git版本切换操作

业务场景 客户环境需要部署当前分支的之前的一个版本代码,所以需要从当前的commit切换到之前的commit 版本切换步骤 查看版本提交日志 $ git reflog切换版本 git reset --hard 七位数的版本id在切换后的版本上更改代码后 执行完暂存 git commit 把回退后的代码提…...

线程池实现“线程复用”的原理

线程池实现“线程复用”的原理 学习线程复用的原理,以及对线程池的 execute 这个非常重要的方法进行源码解析。 线程复用原理 我们知道线程池会使用固定数量或可变数量的线程来执行任务,但无论是固定数量或可变数量的线程,其线程数量都远远…...

[Linux开发工具]——make/Makefile的使用

Linux项目自动化构建工具——make/Makefile 前言:一、背景二、认识make和makefile2.1 创建Makefile文件2.2 创建test.c文件,并打开Makefile2.3 我们想要test.c生成test文件2.4 编译2.5 清理可执行文件 三、理解依赖关系和依赖方法3.1 依赖关系3.2 依赖方…...

C++中的动态数组vector的基本操作

文章目录 前言一、vector数组的声明二、vector数组的初始化三、vector数组的大小1. 在声明时设置大小2. 修改大小3. 查看大小 四、添加元素与删除元素1. 添加元素2. 删除元素 总结 前言 在 C 中,std::vector 是一个标准库中的容器类型。它是一个动态数组&#xff0…...

vsc ctrl+. 无效的问题

描述 ubuntu ibus 输入法 vsc ctrl.快捷键无效 输出 _e 解决方案: 运行 ibus-setup 把表情符号这里的快捷键改了...

科大讯飞开放平台-python语音转文字教程

文章目录 简介实际使用代码coding简介 科大讯飞的语音转写(Long Form ASR)——基于深度全序列卷积神经网络,将长段音频(5小时以内)数据转换成文本数据,为信息处理和数据挖掘提供基础。 转写的是已录制音频(非实时),音频文件上传成功后进入等待队列,待转写成功后用户…...

【LeetCode: 433. 最小基因变化 + BFS】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...

Python 安装目录及虚拟环境详解

Python 安装目录 原文链接:https://blog.csdn.net/xhyue_0209/article/details/106661191 Python 虚拟环境 python 虚拟环境图解 python 虚拟环境配置与详情 原文链接:https://www.cnblogs.com/hhaostudy/p/17321646.html...

linux sh脚本编写

linux中bash Shell 是 Linux 的核心部分,它允许你使用各种诸如 cd、ls、cat 等的命令与 Linux 内核进行交互。Bash脚本和Shell脚本实际上是指同一种类型的脚本,只不过Bash是其中最常用的一种Shell。除了Bash之外,常见的Shell解释器还有C She…...

代码随想录笔记|C++数据结构与算法学习笔记-字符串(二)|28. 实现 strStr()、459.重复的子字符串、KMP算法

文章目录 卡码网.右旋字符串28. 实现 strStr()KMP算法(理论)KMP算法(代码)C代码 459.重复的子字符串暴力解法移动匹配KMP解法 卡码网.右旋字符串 卡码网题目链接 略 28. 实现 strStr() 力扣题目链接 文字链接:28. 实现 strStr() 视频链接:帮你把KMP算法…...

【复杂网络建模】——建模工具Matlab入门

目录 一、认识MATLAB 二、认识工具箱 三、基本操作和函数 3.1 算术操作符 3.2 数学函数 3.3 矩阵操作 3.4 索引和切片 3.5 逻辑操作 3.6 控制流程 3.7 数据输入输出 四、变量和数据类型 4.1 数值类型 4.2 整型 4.3 复数 4.4 字符串 4.5 逻辑类型 4.6 结构体&a…...

JVM面试篇

面试篇就是复习前面学的 什么是JVM 1.定义:JVM指的是Java虚拟机,本质是一个运行在计算机上的程序 2.作用:为了支持Java中Write Once ,Run Anywhere 编写一次 到处运行的跨平台特性 功能: 1.解释和运行 2.内存管理…...

openEuler 22.03(华为欧拉)一键安装 Oracle 19C RAC(19.22) 数据库

前言 Oracle 一键安装脚本,演示 openEuler 22.03 一键安装 Oracle 19C RAC 过程(全程无需人工干预):(脚本包括 ORALCE PSU/OJVM 等补丁自动安装) ⭐️ 脚本下载地址:Shell脚本安装Oracle数据库…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

AspectJ 在 Android 中的完整使用指南

一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...