Wireshark TS | DNS 案例分析之外的思考
前言
承接之前一篇《Packet Challenge 之 DNS 案例分析》,在数据包跟踪文件 dnsing.pcapng 中,关于第 4 题(What is the largest DNS response time seen in this trace file? )的分析过程中曾经碰到一个小问题,主要是数据包中存在部分 DNS 查询数据包重传的现象,因此对于 DNS 响应时间的计算可能就有一点不同的见解。
问题
譬如 No.1-4 数据包,No.1 为起始 DNS 查询,No.2 为 DNS 查询的第一次重传,No.3 为 DNS 查询的第二次重传,No.4 为 DNS 响应,那么 DNS 响应时间是 No.4 和 No.1 的差值?还是 No.4 和 No.3 的差值?
关于上述问题的场景,实际上类似 TCP 超时重传中关于 RTO、RTT 如何选取的问题,如下图。

重传时间的选择是 TCP 最复杂的问题之一,本篇不再展开。
而对于像 dns.time,http.time 等这些关乎应用性能指标的字段值,倒是没有那么讲究。在 Wireshark 中这样的类似字段,以 [ ] 标注的,实际上并不是数据包本身的实际字段。对比数据包 DNS 响应中的 Transaction ID、Flags 等真实字段,可以看到如下:
[Request In: 7]Wireshark 根据上下文提示该 DNS 响应数据包所对应的请求在 No.7 数据包;[Time:0.037583000 seconds]Wireshark 根据上下文计算出该 DNS 响应数据包和请求数据包之间的时间间隔为 0.037583000 秒。

分析
再回到 DNS 这个案例上,Wireshark 根据 Transaction ID 值 0x0f39 对应出 No.7-9 为一组 DNS 请求和响应,其中 No.7 为第一次查询,No.8 为第二次查询(也就是重传,Wireshark 会标记提示为 DNS 查询重传,原始请求在 No.7),No.9 为查询响应。
Wireshark 对于 dns.time的取值是 0.037583000 秒,这个是 No.9 和 No.7 的时间间隔,也就是 0.015479000 加上 0.022104000 的结果,因此 Wireshark dns.time 的算法是第一次查询以及响应数据包之间的间隔时间。

其次根据显示过滤表达式,可过滤出和域名相关的所有 DNS 请求和响应,如下。
dns.qry.name == "www.paypal.com"
包括 6 次完整请求和响应,且每次均有重传请求,其中第 5 次还包含有两次请求重传,因此 dns.time 时间较长,超过了 1 秒。

在 Statistics -> DNS 中,也可以看到相关请求-响应时间,最小 36.8ms 至最长 1041.9ms,平均 212.63ms。

通过 tshark 也可以输出相关 dns 字段值。
λ tshark -r dnsing.pcapng -Y 'dns.qry.name == "www.paypal.com"' -T fields -e frame.number -e dns.id -e dns.flags.response -e dns.time
7 0x0f39 0
8 0x0f39 0
9 0x0f39 1 0.037583000
10 0x5644 0
11 0x5644 0
12 0x5644 1 0.036807000
40 0x4fa0 0
41 0x4fa0 0
42 0x4fa0 1 0.039575000
88 0x7964 0
89 0x7964 0
90 0x7964 1 0.042819000
110 0xaf9f 0
111 0xaf9f 0
112 0xaf9f 0
113 0xaf9f 1 1.041903000
119 0xc8c8 0
122 0xc8c8 0
125 0xc8c8 1 0.077093000
深入
实际上,对于 DNS 请求和响应的关联,我更愿理解是最后一次 DNS 重传请求和响应之间是对应关系,这样所计算出来的 dns.time 会更小,理论上应该也更精确。
因此对于 DNS Transaction ID 值 0x0f39 的一组,计算 No.8 和 No.9 的间隔时间,也就是 dns.time 的值 22ms。

以上都是手工计算,那么对于整个数据包跟踪文件中,存在很多 DNS 请求响应对的,如何得出所有的 dns.time,可通过如下方式输出相关过滤后的数据包。
tshark -r dnsing.pcapng -w test1.pcapng -Y `tshark -r dnsing.pcapng -Y 'dns.qry.name == "www.paypal.com"' -T fields -e frame.number -e dns.id -e dns.flags.response | sort -rn | uniq -f 1 | sort -n | awk '{printf("%sframe.number==%d",sep,$1);sep="||"}'`

通过 tshark 也可以输出相关 dns 字段值。
λ tshark -r test1.pcapng -T fields -e frame.number -e dns.id -e dns.flags.response -e dns.time
1 0x0f39 0
2 0x0f39 1 0.022104000
3 0x5644 0
4 0x5644 1 0.021225000
5 0x4fa0 0
6 0x4fa0 1 0.023975000
7 0x7964 0
8 0x7964 1 0.027038000
9 0xaf9f 0
10 0xaf9f 1 0.026070000
11 0xc8c8 0
12 0xc8c8 1 0.061571000
进阶
在上述分析章节中说到,Wireshark dns.time 的算法是第一次查询以及响应数据包之间的间隔时间,也就是说默认没有考虑有重传请求的存在。
但终究 Wireshark 还是考虑到了这样的场景,在 Perferences -> Protocols -> DNS 中,有如下的选项可以使用:

也就是说重传之间允许的秒数,该选项默认是 5s,也就是 5s 以内的相同请求,都算成是重传请求,而如果全是重传请求的话,则 dns.time 就是第一次查询以及响应数据包之间的间隔时间。
如下,默认 5s 的情况,No.112 在 2s 之内,所以仍是重传请求,dns.time 值 No.113 和 No.110 的间隔时间为 1.041s。

如果选项 Number of seconds allowed between retransmissions 值改为 1s 呢,那么结果如下,No.112 在 1s 之外,所以不再是重传请求,因此 dns.time 值就变成 No.113 和 No.112 的间隔时间为 0.026s。

那么再如果选项 Number of seconds allowed between retransmissions 值改为 0 呢,那么结果如下,自然也就不存在所谓的重传请求,这样也就直接达到了深入章节中的脚本效果。


总结
以上就是在之前 DNS 案例分析中延伸出来的一点思考,选项 Number of seconds allowed between retransmissions 供参考使用。
相关文章:
Wireshark TS | DNS 案例分析之外的思考
前言 承接之前一篇《Packet Challenge 之 DNS 案例分析》,在数据包跟踪文件 dnsing.pcapng 中,关于第 4 题(What is the largest DNS response time seen in this trace file? )的分析过程中曾经碰到一个小问题,主要…...
nginx集群部署访问不了怎么解决
如果你的Nginx集群部署无法访问,可能有多种原因导致,以下是一些常见的解决方法: 检查网络连接:确保服务器之间的网络连接是正常的,可以通过ping命令或telnet命令检查服务器之间的网络连通性。 检查防火墙设置ÿ…...
抖音小程序开发资质认证流程和资料
开发小程序前,你需要先入驻抖音开发平台开发者平台。包含注册账号、主体认证和对公认证,具体操作可参考注册开发者平台账号。 基础信息提交需要资料 1、营业执照。 本文介绍开发者在抖音开放平台的入驻流程。 入驻标准 入驻主体主要为中国或海外…...
【JAVA】通过JAVA实现用户界面的登录
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| 💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-wyCvaz0EBNwHcwsi {font-family:"trebuchet ms",verdana,arial,sans-serif;f…...
UE5 C++ 3D血条 响应人物受伤 案例
一.3Dwidget 1.创建C Userwidget的 MyHealthWidget,声明当前血量和最大血量 UCLASS() class PRACTICEC_API UMyHealthWidget : public UUserWidget {GENERATED_BODY() public:UPROPERTY(EditAnywhere,BlueprintReadWrite,Category "MyWidget")float C…...
阿里云2核4G服务器支持多少人在线?2C4G多少钱一年?
2核4G服务器支持多少人在线?阿里云服务器网账号下的2核4G服务器支持20人同时在线访问,然而应用不同、类型不同、程序效率不同实际并发数也不同,2核4G服务器的在线访问人数取决于多个变量因素。 阿里云2核4G服务器多少钱一年?2核4…...
【STK】手把手教你利用STK进行导弹和反导仿真02 - STK/MMT模块01 导弹任务分析工具概述
导弹任务分析工具 Missile Mission Toolbox MMT包括4个部分,分别是 导弹设计工具 Missile Design Tool MDT 导弹飞行工具 Missile Flight Tool MFT 拦截飞行工具 Interceptor Flight Tool MCT 导弹转换工具 Missile Conversion Tool MCT 可以用于 创建高保真弹道 评估导弹系统…...
新台阶——蓝桥杯单片机省赛第十四届程序设计题目
在做十四届题目之前,常常听学长说,十四届以前拿省一真的是右手就行,并不相信,在经历十四届痛苦的大量修bug和优化之后,或许学长的话真说对了几分。话不多说,我们开始一起完成单片机第十四届程序设计题目。 …...
php魔术方法
PHP 中的魔术方法(Magic Methods)是一组具有特殊名称的方法,它们会在特定的事件发生时自动被调用。这些事件包括对象的创建、销毁、属性的访问和修改等。通过使用魔术方法,你可以更好地控制对象的行为,并增加代码的灵活…...
Linux系统——Mysql索引详解
目录 一、索引介绍 1.索引的概念 2.索引的作用 3.索引的缺点 4.创建索引的原则依据 5.索引优化 二、索引的分类和创建 1.索引分类 1.1普通索引 1.1.1直接创建索引 1.1.2修改表方式创建 1.1.3创建表的时候指定索引 1.2唯一索引 1.2.1直接创建唯一索引 1.2.2修改表…...
Java22已发布,支持SpringBoot3.3.0正式版
Java22已发布,支持SpringBoot3.3.0正式版 文章目录 Java22已发布,支持SpringBoot3.3.0正式版1. JDK22现已推出!2. Java22的新功能1. 语言改进1. 语言预览 2. 库文件3. 性能4. 工具 3. 资源 Java 22现已发布 下一个Java版本提高了Java应用程序…...
第二证券策略:关注部分华为板块、年报绩优品种反弹机会
第二证券指出,短期商场或偏震动运行,跟着4月财报密布发表期临近,重视年报成绩确定性的三大线索:1)出口相关性高的外需拉动种类,如汽车、白电及上游氟化工、纺服及上游化纤;2)供应强约…...
IBM SPSS Statistics for Mac v27.0.1中文激活版
IBM SPSS Statistics for Mac是一款功能强大的统计分析软件,专为Mac用户设计,用于数据分析和决策支持。该软件拥有直观易用的界面和丰富多样的统计工具,使得用户可以轻松进行数据处理、分析和解释。 软件下载:IBM SPSS Statistics…...
C# WPF编程-布局
C# WPF编程-布局 布局WPF布局原则布局过程布局容器布局属性Border控件 常用布局StackPanel布局WrapPanel布局DockPanel布局Grid布局UniformGrid布局Canvas布局InkCanvas布局 布局 WPF布局原则 WPF窗口只能包含单个元素。为在WPF窗口中放置多个元素并创建更贴近实用的用户界面…...
上位机图像处理和嵌入式模块部署(qmacvisual点线测量)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 上面一篇文章,我们完成了直线的拟合操作。在实际场景中,拟合之后更多地是需要进行长度的测量。既然是测量,那么…...
yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理
简介 RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适…...
SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…...
javaSwing宿舍管理系统(三个角色)
一、 简介 宿舍管理系统是一个针对学校宿舍管理的软件系统,旨在方便学生、宿管和管理员进行宿舍信息管理、学生信息管理以及宿舍评比等操作。该系统使用 Java Swing 进行界面设计,分为三个角色:管理员、宿管和学生。 二、 功能模块 2.1 管…...
蓝桥杯day12刷题日记
P8720 [蓝桥杯 2020 省 B2] 平面切分 思路:首先借用dalao的图解释一下,又多出一条与当前平面任意一条直线都不重合线时,多了的平面是交点数1,所以用双层循环每次往里面加一条直线,计算交点 #include <iostream>…...
深度学习pytorch——多分类问题(持续更新)
回归问题 vs 分类问题(regression vs classification) 回归问题(regression) 1、回归问题的目标是使预测值等于真实值,即predy。 2、求解回归问题的方法是使预测值和真实值的误差最小,即minimize dist(p…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
