【算法篇】逐步理解动态规划1(斐波那契数列模型)
目录
斐波那契数列模型
1. 第N个泰波那契数
2.使用最小花费爬楼梯
3.解码方法
学过算法的应该知道,动态规划一直都是一个非常难的模块,无论是状态转移方程的定义还是dp表的填表,都非常难找到思路。在这个算法的支线专题中我会结合很多力扣题型,由简单到复杂,带大家深度剖析动态规划类的题型,欢迎大家关注啊。
顺序:
题目链接-》算法思路-》代码呈现
斐波那契数列模型
动态规划类题目解题步骤:
- 依据题目进行状态表示(dp[i]的含义)
- 写出状态转移方程(类似于dp[i]=dp[i-1]+dp[i-2])
- 为防止填表时数组越界,对dp表进行初始化(dp[0]=dp[1]=1)
- 搞清楚填表顺序(从前往后或者从后往前)
- 利用dp表返回问题答案
1. 第N个泰波那契数
题目链接:
https://leetcode.cn/problems/n-th-tribonacci-number/description/

算法思路:
代码呈现:
class Solution {public int tribonacci(int n) {if(n==0){return 0;}if(n==1||n==2){return 1;}int[] dp=new int[n+1];dp[0]=0;dp[1]=1;dp[2]=1;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2]+dp[i-3];}return dp[n];}
}
2.使用最小花费爬楼梯
题目链接:
https://leetcode.cn/problems/min-cost-climbing-stairs/description/

算法思路:
- 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置: dp[i - 1] + csot[i - 1] ;
- 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置: dp[i - 2] + csot[i - 2] 。
代码呈现:
class Solution {public int minCostClimbingStairs(int[] cost) {int size=cost.length;if(size==2) return Math.min(cost[0],cost[1]);int[] dp=new int[size+1];dp[0]=0;dp[1]=0;dp[2]=Math.min(cost[0],cost[1]);for(int i=3;i<=size;i++){dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[size];}
}
3.解码方法
题目链接:
https://leetcode.cn/problems/decode-ways/
算法思路:
- 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 ...... 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。
- 让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解 码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅ 法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就 可以了。此时 dp[i] = dp[i - 1] ;
ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
代码呈现:
class Solution {public int numDecodings(String s) {char[] arr=s.toCharArray();int n=arr.length;int[] dp=new int[n+1];dp[0]=1;if(arr[0]=='0') dp[1]=0;else dp[1]=1;if(n==1){return dp[1];}for(int i=2;i<n+1;i++){if(arr[i-1]!='0'){dp[i]+=dp[i-1];}if(((arr[i-2]-'0')*10+(arr[i-1]-'0'))<=26&&((arr[i-2]-'0')*10+(arr[i-1]-'0'))>=10){dp[i]+=dp[i-2];}}return dp[n];}
}
相关文章:
【算法篇】逐步理解动态规划1(斐波那契数列模型)
目录 斐波那契数列模型 1. 第N个泰波那契数 2.使用最小花费爬楼梯 3.解码方法 学过算法的应该知道,动态规划一直都是一个非常难的模块,无论是状态转移方程的定义还是dp表的填表,都非常难找到思路。在这个算法的支线专题中我会结合很多力…...
软件测试 - postman高级使用
断言 概念:让程序代替人判断测试用例执行的结果是否符合预期的一个过程 特点: postman断言使用js编写,断言写在postman的tests中 tests脚本在发送请求之后执行,会把断言的结果最终在testresult中进行展示 常用的postman提供的…...
数据交换技术
目录 <线路交换> <报文交换> <分组交换> 1.数据报分组交换 2.虚电路分组交换 计算机网络是以数据交换为目的的技术,从交换技术的发展过程来看,主要经历了线 路交换、报文交换、分组交换的过程。 <线路交换> 线路交换又称为…...
FFmpeg-- mp4文件合成1:aac和h264封装(c++实现)
文章目录 流程api核心代码muxer.hmuxer.cppaac 和 h264 封装为视频流,封装为c++的Muxter类 流程 分配视频文件上下文 int Init(const char *url); 创建流,赋值给视频的音频流和视频流 int AddStream(AVCodecContext *codec_ctx); 写视频流的head int SendHeader(); 写视频流的…...
【嵌入式开发 Linux 常用命令系列 1.3 -- 统计目录下有多少个文件】
统计目录下有多少个文件 在 Linux 中,你可以使用 find 命令和 wc(word count)命令的组合来统计当前目录及其子目录下的文件数量。如果你只对当前目录(不包括子目录)中的文件数量感兴趣,可以使用 ls 和 wc …...
JMeter 如何并发执行 Python 脚本
要在JMeter中并发执行Python脚本,可以使用Jython脚本或通过调用外部Python脚本的方式实现。 使用Jython脚本并发执行Python脚本的步骤: 1、创建一个线程组:在JMeter界面中,右键点击测试计划,选择 “添加” -> “线…...
第十三届蓝桥杯省赛真题 Java B 组【原卷】
文章目录 发现宝藏【考生须知】试题 A: 星期计算试题 B: 山试题 C: 字符统计试题 D: 最少刷题数试题 E \mathrm{E} E : 求阶乘试题 F : \mathrm{F}: F: 最大子矩阵试题 G: 数组切分试题 H: 回忆迷宫试题 I: 红绿灯试题 J 拉箱子 发现宝藏 前些天发现了一个巨牛的人工智能学习…...
Excel 打开后提示:MicrosoftExcel无法计算某个公式。在打开的工作簿中有一个循环引用...
目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 MicrosoftExcel无法计算某个公式。在打开的工作簿中有一个循环引用,但无法列出导致循环的引I用。请尝试编辑上次输入的公式,或利用“撤消”命令删除该公式,如下图&…...
【自我提升】计算机领域相关证书
目录 计算机技术与软件专业资格(水平)考试证书(软考)Oracle认证Cisco认证微软认证红帽认证AWS认证 计算机技术与软件专业资格(水平)考试证书(软考) 计算机技术与软件专业技术资格&a…...
外包干了15天,技术退步明显。。。。。
先说一下自己的情况,本科生,2019年我通过校招踏入了南京一家软件公司,开始了我的职业生涯。那时的我,满怀热血和憧憬,期待着在这个行业中闯出一片天地。然而,随着时间的推移,我发现自己逐渐陷入…...
人工智能(Educoder)-- 搜索技术 -- 启发式搜索
任务描述 本关任务:八数码问题是在一个33的棋盘上有1−8位数字随机分布,以及一个空格,与空格相连的棋子可以滑动到空格中,问题的解是通过空格滑动,使得棋盘转化为目标状态,如下图所示。 为了简化问题的输…...
计算平均分 javascript
养成好习惯:先写注释再写代码 基础版:直接写逻辑(平均分总和/个数) // 求平均分 var scores [60, 55, 80, 33, 75, 100]; // 求和,相除 var sum 0; var avg;for (var i 0; i < 6; i) {sum scores[i]; }avg sum / 6; con…...
Redis入门到实战-第三弹
Redis入门到实战 Redis数据类型官网地址Redis概述Redis数据类型介绍更新计划 Redis数据类型 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://redis.io/Redis概述 Redis是一个开源的(采用BSD许可证&#…...
AnyGo for Mac最新激活版:位置模拟软件打破地域限制
AnyGo for Mac,一款专为Mac用户打造的位置模拟软件,让您能够轻松打破地域限制,畅享无限可能。 软件下载:AnyGo for Mac v7.0.0最新激活版 通过AnyGo,您可以随时随地模拟出任何地理位置,无论是国内热门景点还…...
【Mysql数据库基础07】DDL 数据定义语言
Data Definition Language 1 库的操作1.1 create 创建1.2 alter 修改1.3 drop 删除 2 表的操作2.1 表的创建2.2 表的修改2.2.1 修改表名2.2.2 修改列名2.2.3 修改列的类型和约束2.2.4 添加列2.2.5 删除列 2.3 表的删除2.4 表的复制 3 练习 1 库的操作 1.1 create 创建 create…...
数据库及中表的创建和管理
目录 创建数据库 使用数据库(使用,查看信息) 修改数据库(删除,修改)...
git笔记之撤销、回退、reset方面的笔记
git笔记之撤销、回退、reset方面的笔记 code review! 文章目录 git笔记之撤销、回退、reset方面的笔记1.git 已经commit了,还没push,如何撤销到初始状态git reset --soft HEAD~1git reset HEAD~1(等同于 git reset --mixed HEAD~1࿰…...
【中间件】docker数据卷
📝个人主页:五敷有你 🔥系列专栏:中间件 ⛺️稳中求进,晒太阳 1.数据卷(容器数据管理) 修改nginx的html页面时,需要进入nginx内部。并且因为内部没有编辑器,修改…...
【3D reconstruction 学习笔记 第二部】
三维重建 3D reconstruction 4. 三维重建与极几何三角化(线性解法)三角化(非线性解法)多视图几何极几何极几何约束基础矩阵估计 5. 双目立体视觉重建6. 多视图重建7. SFM 系统设计8. SLAM系统设计 4. 三维重建与极几何 三角化&…...
【CSP试题回顾】202109-1-数组推导(优化)
CSP-202109-1-数组推导 解题代码 #include <iostream> #include <vector> #include <algorithm> using namespace std;long long n, sumMax,sumMin;int main() {cin >> n;vector<long long>arr(n);for (size_t i 0; i < n; i){cin >>…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...
第2课 SiC MOSFET与 Si IGBT 静态特性对比
2.1 输出特性对比 2.2 转移特性对比 2.1 输出特性对比 器件的输出特性描述了当温度和栅源电压(栅射电压)为某一具体数值时,漏极电流(集电极电流...
npm install 相关命令
npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖(默认&…...
