[综述笔记]A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
论文网址:Frontiers | A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis (frontiersin.org)
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
1. 省流版
1.1. 心得
1.2. 论文总结图
2. 论文逐段精读
2.1. Abstract
2.2. Introduction
2.3. Deep Learning
2.3.1. Feed-Forward Neural Networks
2.3.2. Stacked Auto-Encoders
2.3.3. Deep Belief Networks
2.3.4. Deep Boltzmann Machine
2.3.5. Generative Adversarial Networks
2.3.6. Convolutional Neural Networks
2.3.7. Graph Convolutional Networks
2.3.8. Recurrent Neural Networks
2.3.9. Open Source Deep Learning Library
2.4. Applications in Brain Disorder Analysis With Medical Images
2.4.1. Deep Learning for Alzheimer's Disease Analysis
2.4.2. Deep Learning for Parkinson's Disease Analysis
2.4.3. Deep Learning for Austism Spectrum Disorder Analysis
2.4.4. Deep Learning for Schizophrenia Analysis
2.5. Discussion and Future Direction
2.6. Conclusion
3. Reference List
1. 省流版
1.1. 心得
(1)上来直接就开模型介绍,文心吃这些东西吃多了吧
(2)我觉得不该把疾病分开诶,现在很多模型不都为了泛化而用在几个疾病数据集上吗?
(3)⭐在可解释性和数据集上给出解决办法是值得认可的
(4)哥们儿正文和discussion是一个人写的吗???discussion写这么好怎么正文跟
1.2. 论文总结图
2. 论文逐段精读
2.1. Abstract
①Structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET) can all be used in neuroimage analysis
②Disease included: Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, and Schizophrenia
2.2. Introduction
①Introducing medical imaging
②Therefore, the feature selection step is extremely important for complex medical image processing. Although sparse learning and dictionary learning have been used to extract features, their shallow architectures still limit their representation ability.
③The development of hardware promotes the improvement of deep learning in medical image analysis
④Categories of medical imaging analysis: classification, detection/localization, registration, and segmentation
⑤This survey mainly centers on brain disease
cardiac adj.心脏的;心脏病的 n.心脏病患者;强心剂;健胃剂
2.3. Deep Learning
2.3.1. Feed-Forward Neural Networks
①The function of FFNN:
where the is the input vector,
is the output;
superscript denotes layer index, is the number of hidden units;
and
are bias terms of input layer hidden layer respectively;
and
denote non-linear activation function;
represents parameter set
②Sketch map of (A) single and (B) multi layer neural networks:
2.3.2. Stacked Auto-Encoders
①Auto-encoder (AE), namely so called auto-associator, possesses the ability of encoding and decoding
②AE can be stacked as stacked auto-encoders (SAE) with better performance
③Sketch map of SAE:
where the blue and red dot boxes are encoder and decoder respectively
④To avoid being trapped in local optimal solution, SAE applies layer-wise pretraining methods
2.3.3. Deep Belief Networks
①By stacking multiple restricted Bolztman machines (RBMs), the Deep Belief Network (DBN) is constructed
②The joint distribution of DBN:
where denotes visible units and
denotes
hidden layers
③Sketch map of (A) DBN and (B) DBM:
where the double-headed arrow denotes undirected connection and the single-headed arrow denotes directed connection
2.3.4. Deep Boltzmann Machine
①Futher stacking RBMs can get Deep Boltzmann Machine (DBM):
2.3.5. Generative Adversarial Networks
①Simultaneously including generator and discriminator
, Generative Adversarial Networks (GANs) achieves the task of training models with a small number of labeled samples:
②The framework of GAN:
2.3.6. Convolutional Neural Networks
①The framework of convolutional neural network (CNN):
2.3.7. Graph Convolutional Networks
①The framework of Graph Convolutional Networks (GCN):
which includes spectral-based and spatial-based methods
2.3.8. Recurrent Neural Networks
①As the extension of FFNN, recurrent neural network (RNN) ia able to learn features and long-term dependencies from sequential and time-series data
②Framework of (A) long-short-term memory (LSTM) and (B) Gated Recurrent Unit (GRU):
2.3.9. Open Source Deep Learning Library
①Some toolkits of deep learning:
2.4. Applications in Brain Disorder Analysis With Medical Images
2.4.1. Deep Learning for Alzheimer's Disease Analysis
①Introducing the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the classification method of patients
②Enumerating DGM based and CNN based methods, 2D CNN and 3D CNN
③Articles which applying DL in AD detection:
④Classification performance of these articles:
⑤Articles that applying DL to predict MCI:
⑥Prediction performance of artivles above:
2.4.2. Deep Learning for Parkinson's Disease Analysis
①Dataset example: Parkinson's Progression Markers Initiative (PPMI)
②Exampling some DL works on PD diagnosis
③Articles which applying DL in PD detection:
2.4.3. Deep Learning for Austism Spectrum Disorder Analysis
①Dataset: ABIDE I/II
②Particularizing AE/CNN/RNN based methods
③Articles that applying DL to ASD diagnosis:
2.4.4. Deep Learning for Schizophrenia Analysis
①There is no widely used SZ neuroimaging dataset available currently
②Dataset from challenge: The MLSP2014 (Machine Learning for Signal Processing) SZ classification challenge, with 75 NC and 69 SZ
③Articles which applying DL in SZ detection:
2.5. Discussion and Future Direction
①Hyper-parameters of DL:
model optimization parameters | the optimization method, learning rate, and batch sizes, etc. |
network structure parameters | number of hidden layers and units, dropout rate, activation function, etc. |
②Optimization of hyper-parameters:
manual | grid search and random search |
automatic | Bayesian Optimization |
③Deep learning still faces the challenges of weak interpretability, limited multi-modality and limited data in imaging studies
2.6. Conclusion
Medicine and computers will inevitably merge
3. Reference List
Zhang, L. et al. (2020) 'A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis', Front Neurosci. doi: 10.3389/fnins.2020.00779
相关文章:

[综述笔记]A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
论文网址:Frontiers | A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis (frontiersin.org) 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论…...

【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)
快乐的流畅:个人主页 个人专栏:《C语言》《数据结构世界》《进击的C》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、红黑树的概念二、红黑树的模拟实现2.1 结点2.2 成员变量2.3 插入情况一:uncle在左ÿ…...

政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据
政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎机器学习 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 介绍 通过 Keras,您可以编写自定…...

数据库系统概论(超详解!!!) 第四节 关系数据库标准语言SQL(Ⅲ)
1.连接查询 连接查询:同时涉及多个表的查询 连接条件或连接谓词:用来连接两个表的条件 一般格式: [<表名1>.]<列名1> <比较运算符> [<表名2>.]<列名2> [<表名1>.]<列名1> BETWEEN [&l…...

如何使用Python进行网络安全与密码学【第149篇—密码学】
👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 用Python进行网络安全与密码学:技术实践指南 随着互联网的普及,网络…...

应急响应-Web2
应急响应-Web2 1.攻击者的IP地址(两个)? 192.168.126.135 192.168.126.129 通过phpstudy查看日志,发现192.168.126.135这个IP一直在404访问 , 并且在日志的最后几条一直在访问system.php ,从这可以推断 …...
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT 深度学习中的CNN、Transformer、TensorFlow、GPT大语言模型的原理关系问答: Transformer与ChatGPT的关系 Transformer 是一种基于自注意力机制的深度学习模型,最初在论文《Attention is All You Need》…...
用Python做一个植物大战僵尸
植物大战僵尸是一个相对复杂的游戏,涉及到图形界面、动画、游戏逻辑等多个方面。用Python实现一个完整的植物大战僵尸游戏是一个大工程,但我们可以简化一些内容,做一个基础版本。 以下是一个简化版的植物大战僵尸游戏的Python实现思路&#…...

Win11文件右键菜单栏完整显示教程
近日公司电脑升级了win11,发现了一个小麻烦事,如下图: 当我想使用svn或git的时候必须要多点一下,这忍不了,无形之中加大了工作量! 于是,菜单全显示教程如下: 第一步:管…...

【Python实用标准库】argparser使用教程
argparser使用教程 1.介绍2.基本使用3.add_argument() 参数设置4.参考 1.介绍 (一)argparse 模块是 Python 内置的用于命令项选项与参数解析的模块,其用主要在两个方面: 一方面在python文件中可以将算法参数集中放到一起&#x…...

伦敦金与纸黄金有什么区别?怎么选?
伦敦金与纸黄金都是与黄金相关的投资品种,近期黄金市场的上涨吸引了投资者的关注,那投资者想开户入场成为黄金投资者应该选择纸黄金还是伦敦金呢?两者有何区别呢?下面我们就来讨论一下。 伦敦金是一种起源于伦敦的标准化黄金交易合…...

化工企业能源在线监测管理系统,智能节能助力生产
化工企业能源消耗量极大,其节能的空间也相对较大,所以需要控制能耗强度,保持更高的能源利用率。 化工企业能源消耗现状 1、能源管理方面 计量能源消耗时,计量器具存在问题,未能对能耗情况实施完全计量,有…...
C/C++ 一些使用网站收集...
C/C 标准 各种语言协议标准文档 open-std.org 网站 C语言标准文档 open-std.org C基金会网站 C/C 标准库网站 c/c 标准库 cplusplus.com 网站 c/c标准库 cppreference.com 网站 C Core Guidelines【isocpp.org】 C/C 发展 C现有状态及未来规划【isocpp.org】...
2024可以搜索夸克网盘的方法
截止2024可以搜索夸克网盘的方法 6miu盘搜 6miu盘搜是一个强大的网盘搜索工具,它汇集了多个网盘平台的资源,包括百度网盘、163网盘、金山快盘等,可以帮助用户快速找到所需的资料。6miu盘搜的一个显著特点是它的资源更新速度快,可以搜索到最新的资源。此外,6miu盘搜的界面清爽…...

2024年最新阿里云服务器价格表_CPU内存+磁盘+带宽价格
2024年阿里云服务器租用费用,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年,轻量应用服务器2核2G3M带宽轻量服务器一年61元,ECS u1服务器2核4G5M固定带宽199元一年,2核4G4M带宽轻量服务器一年165元12个月,2核4G服务…...
300.【华为OD机试】跳房子I(时间字符串排序—JavaPythonC++JS实现)
本文收录于专栏:算法之翼 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目二.解题思路三.题解代码Python题解代码JAVA题解代码C/C++题解代码JS题解代码四.代码讲解(Ja…...
linux ln Linux 系统中用于创建链接(link)的命令
linux 命令基础汇总 命令&基础描述地址linux curl命令行直接发送 http 请求Linux curl 类似 postman 直接发送 get/post 请求linux ln创建链接(link)的命令创建链接(link)的命令linux linklinux 软链接介绍linux 软链接介绍l…...
mysql按照查询条件进行排序和统计一个字段中每个不同数值出现的次数
1.比如学生表 如何显示查询结果的顺序根据放置的顺序查询 <select id"selectNames" resultType"Student">select * from student_table where 11<if test"studentList! null">and name in<foreach item"item" ind…...

深度学习基础知识
本文内容来自https://zhuanlan.zhihu.com/p/106763782 此文章是用于学习上述链接,方便自己理解的笔记 1.深度学习的网络结构 深度学习是神经网络的一种特殊形式,典型的神经网络如下图所示。 神经元:表示输入、中间数值、输出数值点。例如&…...

UE4_旋转节点总结一
一、Roll、Pitch、Yaw Roll 围绕X轴旋转 飞机的翻滚角 Pitch 围绕Y轴旋转 飞机的俯仰角 Yaw 围绕Z轴旋转 飞机的航向角 二、Get Forward Vector理解 测试: 运行: 三、Get Actor Rotation理解 运行效果: 拆分旋转体测试一&a…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...