复试专业前沿问题问答合集1
复试专业前沿问题问答合集1
人工智能基础知识问答
Q1: 什么是人工智能(AI)?
A1: 人工智能(AI)是计算机科学的一个分支,它涉及创建能够执行通常需要人类智能的任务的机器和软件。这些任务包括学习(获取信息并根据信息对其进行规则化以达到结论)、推理(使用规则达到近似或确定的结论)和自我修正。AI包括多种技术,如机器学习、自然语言处理、机器人技术和计算机视觉等。
Q2: 机器学习在AI中扮演什么角色?
A2: 机器学习是AI的核心组成部分,它使计算机系统能够从数据中学习并改进性能,而无需进行明确的编程。它依赖于算法和统计模型来使计算机识别模式并做出决策,是实现AI的关键技术之一。
大数据基础知识问答
Q3: 什么是大数据?
A3: 大数据指的是在传统数据处理应用软件难以处理的大规模、高增长率和多样化的数据集。它通常被描述为“V”的三个特征:Volume(体量大)、Velocity(速度快)和Variety(类型多)。大数据的处理需要特殊的技术和工具。
Q4: 大数据如何影响决策制定?
A4: 大数据分析能够揭示隐藏在大量数据中的模式、趋势和关联,从而帮助组织做出更加明智的决策。例如,在商业领域,通过分析消费者行为数据&#x
相关文章:
复试专业前沿问题问答合集1
复试专业前沿问题问答合集1 人工智能基础知识问答 Q1: 什么是人工智能(AI)? A1: 人工智能(AI)是计算机科学的一个分支,它涉及创建能够执行通常需要人类智能的任务的机器和软件。这些任务包括学习(获取信息并根据信息对其进行规则化以达到结论)、推理(使用规则达到近…...
C++标准库中提供的用于处理正则表达式的类std::regex
std 是 C 标准库的命名空间,包含了大量标准的 C 类、函数和对象。这些类和函数提供了广泛的功能,包括输入输出、容器、算法、字符串处理等。 通常,为了使用标准库中的对象和函数,需在代码中包含相应的头文件,比如 #in…...
.NET Core 服务实现监控可观测性最佳实践
前言 本次实践主要是介绍 .Net Core 服务通过无侵入的方式接入观测云进行全面的可观测。 环境信息 系统环境:Kubernetes编程语言:.NET Core ≥ 2.1日志框架:Serilog探针类型:ddtrace 接入方案 准备工作 DataKit 部署 DataK…...
AI基础知识扫盲
AI基础知识扫盲 AIGCLangchain--LangGraph | 新手入门RAG(Retrieval-Augmented Generation)检索增强生成fastGPT AIGC AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。 …...
分布式系统面试全集通第一篇(dubbo+redis+zookeeper----分布式+CAP+BASE+分布式事务+分布式锁)
目录 分布式系统面试全集通第一篇什么是分布式?和微服务的区别什么是分布式分布式与微服务的区别 什么是CAP?为什么不能三者同时拥有分区容错性一致性可用性 Base理论了解吗基本可用软状态最终一致性 什么是分布式事务分布式事务有哪些常见的实现方案?2PC(Two Ph…...
Prompt-RAG:在特定领域中应用的革新性无需向量嵌入的RAG技术
论文地址:https://arxiv.org/ftp/arxiv/papers/2401/2401.11246.pdf 原文地址:https://cobusgreyling.medium.com/prompt-rag-98288fb38190 2024 年 3 月 21 日 虽然 Prompt-RAG 确实有其局限性,但在特定情况下它可以有效地替代传统向量嵌入 …...
线性代数 - 应该学啥 以及哪些可以交给计算机
AI很热,所以小伙伴们不免要温故知新旧时噩梦 - 线代。 (十几年前,还有一个逼着大家梦回课堂的风口,图形学。) 这个真的不是什么美好的回忆,且不说老师的口音,也不说教材的云山雾绕,单…...
力扣面试150 Pow(x, n) 快速幂 负指数
Problem: 50. Pow(x, n) 解题方法 👨🏫 参考题解 复杂度 时间复杂度: O ( l o g 2 n ) O(log_{2}n) O(log2n) 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution {public double myPow(double x, int n){if (x 0.0f)return 0.0d;long b…...
连接navicat报错2059 解决办法
这里写自定义目录标题 连接navicat报错2059 解决办法 连接navicat报错2059 解决办法 打开终端工具输入 mysql -hlocalhost -uroot -p回车(enter),输入密码后进入 mysql 。(PS: -h 后面是数据库地址, -u 后…...
Unity-UGUI系统
UGUI是什么 UGUI是Unity引擎内自带的UI系统官方称之为:Unity Ul 是目前Unity商业游戏开发中使用最广泛的UI系统开发解决方案 它是基于Unity游戏对象的UI系统,只能用来做游戏UI功能 不能用于开发Unity编辑器中内置的用户界面 六大基础组件 概述 Canvas EventS…...
配置AC和AP上报KPI指标信息实验
配置AC和AP上报KPI指标信息示例 组网图形 图1 AP直接上报KPI指标 图2 AP通过AC透传上报KPI指标 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件 业务需求 在云管理的ACFIT AP组网中,通过WMI上报机制,将AC和AP的KPI指标信息上报到iMast…...
深度学习Trick
Vscode查看文件目录 cmdshiftp选择->查看:将焦点置于辅助侧栏 View: Focus into Secondary Side Bar把主边栏的大纲拖入 快捷查看卷积过程,利用 torchinfo 在 model 下打断点F5 运行调试,F10 运行下一步在调试控制台输入from torchinfo…...
c++顺序表(连续插入删除)
Description 建立顺序表的类,属性包括:数组、实际长度、最大长度(设定为1000) 该类具有以下成员函数: 构造函数:实现顺序表的初始化。 插入多个数据的multiinsert(int i, int n, int item[])函数&#x…...
[综述笔记]A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
论文网址:Frontiers | A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis (frontiersin.org) 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论…...
【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)
快乐的流畅:个人主页 个人专栏:《C语言》《数据结构世界》《进击的C》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、红黑树的概念二、红黑树的模拟实现2.1 结点2.2 成员变量2.3 插入情况一:uncle在左ÿ…...
政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据
政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎机器学习 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 介绍 通过 Keras,您可以编写自定…...
数据库系统概论(超详解!!!) 第四节 关系数据库标准语言SQL(Ⅲ)
1.连接查询 连接查询:同时涉及多个表的查询 连接条件或连接谓词:用来连接两个表的条件 一般格式: [<表名1>.]<列名1> <比较运算符> [<表名2>.]<列名2> [<表名1>.]<列名1> BETWEEN [&l…...
如何使用Python进行网络安全与密码学【第149篇—密码学】
👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 用Python进行网络安全与密码学:技术实践指南 随着互联网的普及,网络…...
应急响应-Web2
应急响应-Web2 1.攻击者的IP地址(两个)? 192.168.126.135 192.168.126.129 通过phpstudy查看日志,发现192.168.126.135这个IP一直在404访问 , 并且在日志的最后几条一直在访问system.php ,从这可以推断 …...
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT 深度学习中的CNN、Transformer、TensorFlow、GPT大语言模型的原理关系问答: Transformer与ChatGPT的关系 Transformer 是一种基于自注意力机制的深度学习模型,最初在论文《Attention is All You Need》…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
