AI大模型在医疗领域的应用案例:自然语言处理与医疗文本分析
随着人工智能技术的快速发展,AI大模型在自然语言处理、图像识别、语音识别等领域的应用越来越广泛。在医疗领域,AI大模型的应用正在深刻改变着医疗实践,为患者和医生带来前所未有的便利。近期AI医疗的概念也比较火热,本文将聚焦于自然语言处理在医疗文本分析中的应用案例,通过实例代码展示AI大模型是如何解决实际问题的,并探讨其性能表现和潜在改进空间。
一、应用案例:医疗文本自动分类与摘要
在医疗领域,大量的病历、医学文献和临床报告需要被医生和分析师进行阅读和分析。然而,手动处理这些文本数据既耗时又容易出错。AI大模型通过自然语言处理技术,可以自动对这些文本进行分类和摘要,极大地提高了工作效率和准确性。
例如,我们可以利用基于Transformer的预训练语言模型(如BERT、GPT等)来训练一个医疗文本分类器。这个分类器可以识别不同类型的医疗文本,如病历、诊断报告、医学论文等,并根据内容进行自动分类。同时,我们还可以利用摘要生成技术,从长篇的医学文献中提取关键信息,生成简洁明了的摘要,帮助医生快速了解文献的主要内容。
二、性能表现
在实际应用中,AI大模型在医疗文本分析方面展现出了令人瞩目的性能。通过大量的训练数据和复杂的模型结构,这些模型能够准确地理解医疗文本中的语义信息,实现高精度的分类和摘要生成。
然而,我们也需要注意到,医疗文本的复杂性和多样性给AI大模型的应用带来了一定的挑战。例如,医学术语的复杂性、不同医院和医生书写风格的差异等,都可能影响模型的性能。因此,在实际应用中,我们需要不断优化模型结构和算法,提高模型的泛化能力和鲁棒性。
三、潜在改进空间
尽管AI大模型在医疗文本分析方面已经取得了显著的成果,但仍然存在一些潜在的改进空间。
首先,我们可以进一步增加训练数据的多样性和规模,以提高模型的泛化能力。通过收集更多的医疗文本数据,并对其进行标注和预处理,我们可以使模型更好地适应不同场景下的应用需求。
其次,我们可以尝试将多种技术融合到医疗文本分析中。例如,结合图像识别和语音识别技术,我们可以从医疗影像和语音记录中提取更多的信息,为医生提供更全面的患者数据。
最后,我们还可以探索如何更好地利用医疗领域的知识库和专家经验来优化模型。通过引入领域知识和专家意见,我们可以进一步提高模型的准确性和可靠性。
四、实例代码
比如下面代码,展示了如何使用预训练的BERT模型进行医疗文本分类。
import torch
from transformers import BertTokenizer, BertForSequenceClassification # 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) # 假设我们有两个分类 # 示例医疗文本
medical_text = "患者因咳嗽、发热就诊,诊断为肺炎。" # 对文本进行分词和编码
inputs = tokenizer(medical_text, return_tensors='pt', padding=True, truncation=True) # 将编码后的输入传递给模型进行预测
with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) # 输出预测结果
print(f"Predicted class: {predictions.item()}")
在上述代码中,我们首先加载了预训练的BERT模型和分词器。然后,我们对一个示例医疗文本进行了分词和编码,将编码后的输入传递给模型进行预测。最后,我们输出了模型的预测结果。
通过不断优化模型结构和算法,并结合更多的医疗领域知识和数据,我们可以进一步提高AI大模型在医疗文本分析中的性能和应用价值。这将为医疗实践带来更多的便利和效益,推动医疗行业的创新和发展。
相关文章:
AI大模型在医疗领域的应用案例:自然语言处理与医疗文本分析
随着人工智能技术的快速发展,AI大模型在自然语言处理、图像识别、语音识别等领域的应用越来越广泛。在医疗领域,AI大模型的应用正在深刻改变着医疗实践,为患者和医生带来前所未有的便利。近期AI医疗的概念也比较火热,本文将聚焦于…...
c语言常见错误
1.运算符“=”和“==”的误用 在if (“变量”==”常量”)表达式中最好写成 “常量”==“变量”的形式,否则容易造成逻辑判断不正确或者变量被错误赋值。 2.不要使用默认优先级,使用括号来保证自己的运算优先级! 3.网络序:所有设备和系统都是按照设备接收、发送数据的顺序…...
分别使用TCP/UDP实现互相实时发送消息,接收消息功能
什么是TCP? TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层协议。它是互联网协议套件中的一部分,用于在网络上可靠地传输数据。TCP协议的主要特点包括: 面向连接:在TCP通信中,通信双方在通信之前必须先建立连接。连接建立后,数据传输完成后还需要显式…...

使用阿里CICD流水线打包Vue项目到阿里的docker镜像私仓,并自动部署到服务器启动服务
文章目录 使用阿里CICD流水线打包Vue项目到阿里的docker镜像私仓,并自动部署到服务器启动服务1、功能实现原理大家可以看我之前的两篇文章2、打包vue项目和打包咱们的Java项目过程差不多相同,大家可以看着上面的Java打包过程进行实验,下面是v…...

第十三届蓝桥杯物联网试题(省赛)
做后感悟: OLED显示函数需要一直显示,所以在主函数中要一直循环,为了确保这个检错功能error只输出一次,最好用中断串口进行接收数据,数据收完后自动进入中断函数中,做一次数据检查就好了,该开灯…...

将谷歌 Gemma AI大模型 部署安装本地教程(可离线使用)
CSDN 成就一亿技术人! 作者主页:点击! ————前言———— 谷歌 Gemma 是一个基于 Python 的图像分析工具,提供快速和准确的物体检测、定位、分类和风格迁移功能。它使用 TensorFlow Lite 模型,使它可以快速运行在…...
ChatGPT提示词大全:解锁AI对话
2024升级ChatGPTPLUS最快的方法 一、什么是ChatGPT提示词? ChatGPT提示词是用户在与ChatGPT进行对话时,提供的一些关键词或短语,用于引导ChatGPT的回答方向和内容。通过合理的提示词设置,用户可以更加精确地获取所需信息&#x…...

rust中字符串String常用方法和注意事项
Rust 中通常说的字符串指的是:String 和 &str(字符串字面值、或者叫字符串切片)这两种类型。str是rust中基础字符串类型,String是标准库里面的类型。Rust 中的字符串本质上是:Byte的集合(Vec<u8>) 基础类型…...

C语言:自定义类型(结构体)
目录 一、结构的特殊声明二、结构的自引用三、结构体内存对齐1.对齐规则2.为什么存在内存对齐(1)平台原因 (移植原因):(2)性能原因: 3.修改默认对齐数 四、结构体传参五、结构体实现位段1.什么是位段2.位段的内存分配3.位段的跨平台问题4.位段使用的注意…...

唯众物联网安装调试员实训平台物联网一体化教学实训室项目交付山东技师学院
近日,山东技师学院物联网安装调试员实训平台及物联网一体化教学实训室采购项目已顺利完成交付并投入使用,标志着学院在物联网技术教学与实践应用方面迈出了坚实的一步。 山东技师学院作为国内知名的技师培养摇篮,一直以来致力于为社会培养高…...

SqlServer期末复习(数据库原理及应用)持续更新中
一、SQL语句 1.1 SQL语句知识引入 1.DDL语言(数据定义语言)主要是进行定义/改变表的结构、数据类型、表之间的链接等操作,关键字CREATE、DROP、ALTER CREATE TABLE 表面( 列名1 数据类型, 列名2 数据类型, ) ALTER TABLE 表名&a…...

合辑下载 | MatrixOne 与 MySQL 全面对比
前言 MatrixOne是一款高度兼容MySQL语法的HTAP数据库,采用云原生化和存储、计算、事务分离的架构打造了HSTAP超融合数据引擎,实现单一数据库系统同时支持OLTP、OLAP、流计算等多种业务负载。基于MatrixOne高度兼容MySQL的定位,社区的小伙伴在…...

Ubuntu 22.04安装Python3.10.13
Ubuntu最好设置为英文,我之前用中文在make的test的时候,总是会有fail。 查了下有人怀疑是language的问题,保险起见都用英文,个人实践也证明改为英文就不报错了。 issue 44031: test_embed and test_tabnanny fails if the curre…...

2.4 如何运行Python程序
如何运行Python程序? Python是一种解释型的脚本编程语言,这样的编程语言一般支持两种代码运行方式: 1) 交互式编程 在命令行窗口中直接输入代码,按下回车键就可以运行代码,并立即看到输出结果;执行完一行…...
Vue中如何实现动态改变字体大小
在Vue应用程序中,动态改变字体大小是一个常见的需求。这可以通过使用Vue的数据绑定功能和计算属性来实现。在本文中,我们将介绍如何在Vue中实现动态改变字体大小,并提供示例代码以帮助您更好地理解。 开始 在动态改变字体大小之前࿰…...

Spring实例化Bean的三种方式
参考资料: Core Technologies 核心技术 spring实例化bean的三种方式 构造器来实例化bean 静态工厂方法实例化bean 非静态工厂方法实例化bean_spring中有参构造器实例化-CSDN博客 1. 构造函数 1.1. 空参构造函数 下面这样表示调用空参构造函数,使用p…...

AI研报:从Sora看多模态大模型发展
《从Sora看多模态大模型发展》的研报来自浙商证券,写于2024年2月。 这篇报告主要探讨了多模态大模型的发展趋势,特别是OpenAI发布的视频生成模型Sora,以及其对行业发展的影响。以下是报告的核心内容概述: Sora模型的发布&#x…...

Unity访问安卓(Android)或苹果(iOS)相册
1.下载Native Gallery for Android & iOS插件 2.在场景中添加截图按钮、选择图片按钮、选择视频按钮等 using OpenCVForUnity.CoreModule; using OpenCVForUnity.ImgprocModule; using OpenCVForUnity.UnityUtils; using System.Collections; using System.Collections.Gen…...
用webpack 构建自己的vue-cli
步骤1 :新建文件夹 my-vue-cli 步骤2: 在文件夹中输入npm init (拥有npm管理环境),之后可以安装我们所需要的包 步骤3:安装 webpack、webpack-cli (webpack打包工具,webpack 执行依赖webpack-cli) npm i webpack w…...
ZCC6982最大充电电流 2A、升压型 2 节锂电池充电管理器
特性 ■ 高达 2A 的可调充电电流(受实际散热和输入功率限制) ■ 支持 8.4V、8.6V、8.7V、8.8V 的充满电压 ■ 高达 28V 的输入耐压保护 ■ 高达 28V 的电池端耐压保护 ■ 宽输入工作电压范围:3.0V~6.5V ■ 峰值效率可达 96%、重载…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...